997 resultados para Pancreatic enzyme preparation
Resumo:
A rapid indirect enzyme-linked immunosorbent assay (ELISA) was developed for measuring antibodies against Anaplasma marginale using a partially soluble antigen prepared from semi-purified initial bodies from erythrocytes with 80.0% of rickettsiaemia. This technique utilized alkaline phosphatase and p-nitrophenyl phosphate as reaction indicators. The high sensitivity (100.0%) was confirmed with sera from 100 calves experimentally-infected with A. marginale. All of these animals showed seroconversion before or at the same time of the first rickettsiaemia or even when it was not detected. Also the elevated specificity (94.0%) was confirmed by the low percentage of cross-reactions with sera from animals experimentally-infected with Babesia bigemina and Babesia bovis (1.4 and 6.6%, respectively). Performances of ELISA and indirect fluorescent antibody test (IFAT) with 324 sera from enzootically stable area did not show statistical difference (P>0.05), since the former showed 96.9% and the latter 97.2% of positive reactions. The advantage of this ELISA is a shorter execution time than others developed until now, allowing more samples to be analyzed.
Resumo:
A rapid indirect enzyme-linked immunosorbent assay (ELISA) was developed for measuring antibodies against Leishmania chagasi using total antigen from lysed promastigotes. Fifty symptomatic mixed breed dogs from a region of high incidence of visceral leishmaniasis in Brazil were examined. The results showed that in the positive animals, diagnosed by cytological examination, the ELISA using protein A assay system (mean optical density ± SD / 2.078 ± 0.631) detected more antibodies than the anti-IgG assay (mean optical density ± SD / 1.008 ± 0.437), while in the negative animals, the results by both systems were similar. These results suggest that the ELISA assay using protein A peroxidase conjugated could be useful to detect early infected animals in endemic areas, and thus help to control the spread of the infection.
Resumo:
A complement fixation test (CFT), performed in microtitre plates, based upon the use of crude antigenic preparation of Babesia equi was adapted for the detection of antibodies in serum of infected horses. The indirect fluorescent antibody test (IFAT) and enzyme-linked immunosorbent assay (ELISA) were also used for the immunodiagnosis of B. equi. Serum samples from 15 apparently healthy horses, previously conditioned to a high-speed equine treadmill, were taken before and after exercise. All the samples analyzed were positive for B. equi infection. There were no significant differences (P<0.01) between these 3 tests, or the condition of rest or stress. The combined use of CFT and IFAT or ELISA should be recommended in order to enable veterinary services to more efficiently prevent introduction of infected horses into disease-free areas.
Resumo:
An indirect enzyme-linked immunosorbent assay was developed to detect antigen-specific secretory IgA antibodies to Campylobacter fetus subsp. venerealis in bovine vaginal mucus with a protein extract of the Campylobacter fetus subsp. venerealis by the acid glycine extraction method. Mean optical density measurement (λ=450 nm) was 0.143±0.9. The most immunoreactive protein bands of the Campylobacter fetus subsp. venerealis or Campylobacter fetus subsp. fetus recognized by IgA in immunoblotting, using bovine vaginal mucus samples, migrate at 42.6 kDa. The protein that migrates at 93 kDa was recognized exclusively for C. fetus subsp. venerealis. A positive vaginal mucus sample of a cow from negative herd recognized antigens of C. jejuni subsp. jejuni e C. fetus subsp. fetus.
Resumo:
The South American fur seal (Arctocephalus australis) is an amphibious marine mammal distributed along the Atlantic and Pacific coasts of South America. The species is well adjusted to different habitats due to the morphology of its fin-like members and due to some adaptations in their integumentary system. Immunohistochemical studies are very important to evaluate the mechanisms of skin adaptation due the differential expression of the antigens present in the tissue depending of the region of the body surface. However, its strongly pigmented (melanin) epidermis prevents the visualization of the immuno-histochemical chromogens markers. In this study a melanin bleaching method was developed aimed to allow the visualization of the chromogens without interfering in the antigen-antibody affinity for immunohistochemistry. The analysis of PCNA (proliferating cell nuclear antigen) index in the epidermis of A. australis by immunohistochemistry with diaminobenzidine (DAB) as chromogen was used to test the method. The bleaching of the melanin allowed to obtain the cell proliferation index in epidermis and to avoid false positive results without affecting the immunohistochemical results.
Resumo:
The human body eliminates foreign compounds primarily by metabolizing them to hydrophilic forms to facilitate effective excretion through the kidneys. Cytochrome P450 (CYP) enzymes in the liver and intestine contribute to the metabolism of many drugs. Pharmacokinetic drugdrug interactions occur if the activity of CYPs are inhibited or induced by another drug. Prescribing multiple drugs to the improve effectiveness of therapy or to treat coexisting diseases is a common practice in clinical medicine. Polypharmacy predisposes patients to adverse effects because of the profound unpredictability in CYP enzymatic-mediated drug metabolism. S-ketamine is a phencyclidine derivative which functions as an antagonist of the N-methyl-Daspartate (NMDA) receptor in the central nervous system. It is a unique anaesthetic producing “dissociative anaesthesia” in high doses and analgesia in low doses. Studies with human liver microsomes suggest that ketamine is metabolized primarily via CYP3A4 and CYP2B6 enzymes. In this thesis, in healthy volunteers, randomized and controlled cross-over studies were conducted to investigate the effects of different CYP inducers and inhibitors on the pharmacokinetics and pharmacodynamics of oral and intravenous S-ketamine. The plasma concentrations of ketamine and its metabolite, norketamine, were determined at different timepoints over a 24 hour period. Other pharmacodynamic variables were examined for 12 hours. Results of these studies showed that the inhibition of the CYP3A4 pathway by clarithromycin or grapefruit juice increased the exposure to oral S-ketamine by 2.6- and 3.0-fold. Unexpectedly, CYP3A4 inhibition by itraconazole caused no significant alterations in the plasma concentrations of oral S-ketamine. CYP3A4 induction by St. John´s wort or rifampicin decreased profoundly the concentrations of oral S-ketamine. However, after rifampicin, there were no significant differences in the plasma concentrations of S-ketamine when it was administered intravenously. This demonstrated that rifampicin inhibited the metabolism of Sketamine at the intestinal level. When CYP2B6 was inhibited by ticlopidine, there was a 2.4- fold increase in the exposure of S-ketamine. These studies demonstrated that low dose oral Sketamine is metabolized both via CYP3A4 and CYP2B6 pathways. The concomitant use of drugs that affect CYP3A4 or CYP2B6, during oral S-ketamine treatment, may cause clinically significant drug-drug interactions.
Resumo:
Collaboration is essential for successful new product development. In the preparation for ramp-up production collaboration between R&D and supply chain functions is crucial. This thesis examines the meaning of collaboration and the effects of collaboration between R&D and supply chain. The aim of this thesis is to analyse and advice on how to improve the collaboration between the research and development department and supply chain within the preparation for rampup process. This thesis begins by introducing the reader to the product development methodologies and collaboration literature. The following part of the thesis describes the current situation and the results of the qualitative research. The last part of the thesis will explain the improvement suggestions. The main improvement suggestions are clarification of the processes and responsibilities and the introduction of a kick-off meeting.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
Herbicides that inhibit the enzyme protoporphyrinogen oxidase (PROTOX) are usually effective to control dicotyledonous weeds and their agronomic efficacy is affected by environmental and physiological factors. The objective of this review is to summarize the knowledge of those factors available in the scientific literature in the last decade. Environmental factors that influence PROTOX inhibitors include temperature, irradiance and relative humidity. The most relevant physiological factors are the activity of enzymes that can detoxify herbicides and also of enzymes that mitigate the effects of oxidative stress in plants. The study also suggests some possible management strategies that could optimize the activity of PROTOX-inhibiting herbicides.
Resumo:
Biocatalysis can be applied in organic synthetic chemistry to counter challenges posed by increased demands towards chemo-, regio- and stereoselectivity, not forgetting the need for greener chemistry. During the last 30 years, biocatalysis with the use of enzymes as chiral catalysts has become more common in chemistry laboratories and industrial processes. In this thesis, the use of lipases as versatile biocatalysts in the acylation of alcohols is examined both in the light of literature examples and four original publications. In the first part of the work presented in this thesis lipases were utilized in two examples concerning secondary alcohols. First, the kinetic resolution of heterocyclic aromatic secondary alcohols through transesterification was thoroughly examined including the studies of competing hydrolysis and esterification reactions. In another example, lipases were utilized in the formation of a dynamic systemic resolution (DSR) process which in turn was used as a developmental tool in the optimization of the dynamic kinetic resolution (DKR) of five heterocyclic aromatic cyanohydrins in one pot for the preparation of cyanohydrin esters as single enantiomers. In the second part of the work, the regio- and stereoselectivity of lipases was used to form sugar conjugates of glyceric and β-amino acids. The primary hydroxyl groups of methyl α-D-galacto-, -gluco- and -mannopyranosides were now acylated trough lipasecatalyzed transesterification and enantioselective lipase-catalyzed ring-opening of β- lactams, respectively.
Resumo:
Some modifications were made to the methodology of Imai et al. (Jpn. J. Genet. 63: 159-185, 1988) for cytogenetic analysis of the leaf-cutting ants Atta sexdens piriventris and Acromyrmex heyeri (Hymenoptera, Formicidae), shortening preparation time and improving chromosomal preparations. The brain ganglia of prepupae were dissected in a 0.0025% hypotonic solution of colchicine, placed on a glass slide on a cold plate (4 ± 1oC) for 20 min. The material was fixed directly on the cold slide (with cold fixative I), macerated with a histological needle and fixed again with fixative I, followed by fixatives II and III, all of them cold. The slide was flame-dried right after the use of fixative III, and it was allowed to air-dry at room temperature for 2 h. The resulting metaphases presented less contracted chromosomes, with separated and well defined sister chromatids at a high frequency, when the material was processed in the manner described and stained with 3% Giemsa in phosphate buffer (pH 6.8) for 15 min.
Resumo:
An increase in angiotensin-converting enzyme (ACE) activity has been observed in the heart after myocardial infarction (MI). Since most studies have been conducted in chronically infarcted individuals exhibiting variable degrees of heart failure, the present study was designed to determine ACE activity in an earlier phase of MI, before heart failure development. MI was produced in 3-month old male Wistar rats by ligation of the anterior branches of the left coronary artery, control rats underwent sham surgery and the animals were studied 7 or 15 days later. Hemodynamic data obtained for the anesthetized animals showed normal values of arterial blood pressure and of end-diastolic pressure in the right and left ventricular cavities of MI rats. Right and left ventricular (RV, LV) muscle and scar tissue homogenates were prepared to determine ACE activity in vitro by measuring the velocity of His-Leu release from the synthetic substrate Hyp-His-Leu. ACE activity was corrected to the tissue wet weight and is reported as nmol His-Leu g-1 min-1. No significant change in ACE activity in the RV homogenates was demonstrable. A small nonsignificant increase of ACE activity (11 ± 9%; P0.05) was observed 7 days after MI in the surviving left ventricular muscle. Two weeks after surgery, however, ACE activity was 46 ± 11% (P<0.05) higher in infarcted rats compared to sham-operated rats. The highest ACE activity was demonstrable in the scar tissue homogenate. In rats studied two weeks after surgery, ACE activity in the LV muscle increased from 105 ± 7 nmol His-Leu g-1 min-1 in control hearts to 153 ± 11 nmol His-Leu g-1 min-1 (P<0.05) in the remaining LV muscle of MI rats and to 1051 ± 208 nmol His-Leu g-1 min-1 (P<0.001) in the fibrous scar. These data indicate that ACE activity increased in the heart after infarction before heart failure was demonstrable by hemodynamic measurements. Since the blood vessels of the scar drain to the remaining LV myocardium, the high ACE activity present in the fibrous scar may increase the angiotensin II concentration and decrease bradykinin in the cardiac tissues surrounding the infarcted area. The increased angiotensin II in the fibrous scar may contribute to the reactive fibrosis and hypertrophy in the left ventricular muscle surviving infarction
Resumo:
The activity of important glycolytic enzymes (hexokinase, phosphofructokinase, aldolase, phosphohexoseisomerase, pyruvate kinase and lactate dehydrogenase) and glutaminolytic enzymes (phosphate-dependent glutaminase) was determined in the thymus and mesenteric lymph nodes of Wistar rats submitted to protein malnutrition (6% protein in the diet rather than 20%) from conception to 12 weeks after birth. The wet weight (g) of the thymus and mesenteric lymph nodes decreased due to protein malnutrition by 87% (from 0.30 ± 0.05 to 0.04 ± 0.01) and 75% (0.40 ± 0.04 to 0.10 ± 0.02), respectively. The protein content was reduced only in the thymus from 102.3 ± 4.4 (control rats) to 72.6 ± 6.6 (malnourished rats). The glycolytic enzymes were not affected by protein malnutrition, but the glutaminase activity of the thymus and lymph nodes was reduced by half in protein-malnourished rats as compared to controls. This fact may lead to a decrease in the cellularity of the organ and thus in its size, weight and protein content.