989 resultados para PULSE ANALYZERS
Resumo:
BACKGROUND: Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. METHODS: ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. RESULTS: For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). CONCLUSIONS: Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.
Resumo:
The efficacy of mammalian target of rapamycin (mTOR) inhibitors is currently tested in patients affected by autosomal dominant polycystic kidney disease. Treatment with mTOR inhibitors has been associated with numerous side effects. However, the renal-specific effect of mTOR inhibitor treatment cessation in polycystic kidney disease is currently unknown. Therefore, we compared pulse and continuous everolimus treatment in Han:SPRD rats. Four-week-old male heterozygous polycystic and wild-type rats were administered everolimus or vehicle by gavage feeding for 5 wk, followed by 7 wk without treatment, or continuously for 12 wk. Cessation of everolimus did not result in the appearance of renal cysts up to 7 wk postwithdrawal despite the reemergence of S6 kinase activity coupled with an overall increase in cell proliferation. Pulse everolimus treatment resulted in striking noncystic renal parenchymal enlargement and glomerular hypertrophy that was not associated with compromised kidney function. Both treatment regimens ameliorated kidney function, preserved the glomerular-tubular connection, and reduced proteinuria. Pulse treatment at an early age delays cyst development but leads to striking glomerular and parenchymal hypertrophy. Our data might have an impact when long-term treatment using mTOR inhibitors in patients with autosomal dominant polycystic kidney disease is being considered.
Resumo:
Vicariance is thought to have played a major role in the evolution of modern parrots. However, as the relationships especially of the African taxa remained mostly unresolved, it has been difficult to draw firm conclusions about the roles of dispersal and vicariance. Our analyses using the broadest taxon sampling of old world parrots ever based on 3219 bp of three nuclear genes revealed well-resolved and congruent phylogenetic hypotheses. Agapornis of Africa and Madagascar was found to be the sister group to Loriculus of Australasia and Indo-Malayasia and together they clustered with the Australasian Loriinae, Cyclopsittacini and Melopsittacus. Poicephalus and Psittacus from mainland Africa formed the sister group Of the Neotropical Arini and Coracopsis from Madagascar and adjacent islands may be the closest relative of Psittrichas from New Guinea. These biogeographic relationships are best explained by independent colonization of the African continent via trans-oceanic dispersal from Australasia and Antarctica in the Paleogene following what may have been vicariance events in the late Cretaceous and/or early Paleogene. Our data support a taxon pulse model for the diversification of parrots whereby trans-oceanic dispersal played a more important role than previously thought and was the prerequisite for range expansion into new continents. (C) 2009 Elsevier Inc. All rights reserved
Resumo:
To provide an integrated perspective on mineral particle effects in salmonids, juvenile rainbow trout (Oncorhynchus mykiss) were exposed to daily mica particle pulses for 8 and 24 days. On day 8, increased immature erythrocyte proportions indicated a previous stress response. This response was absent on day 24, on which condition factor as well as plasma protein and aspartate aminotransferase activity decreased. The latter two related negatively to the hepato-somatic index, suggesting metabolic adaptations. The hepato-somatic index increased on days 8 and 24, while spleen-somatic index increased on day 24. No histopathological damage occurred in gills, liver, spleen, or kidney. However, splenic melano-macrophages increased on both days, and hyaline degenerations of kidney tubular cells were apparent on day 24. Overall, particle pulses affected rainbow trout more via turbidity rather than by physical damage. We conclude that (i) rainbow trout may adapt to sediment pulses as early as 8 days of exposure and (ii) particle pulses over 24 days can cause structural and metabolic changes in rainbow trout, even when gill damage is absent and apical effects on condition are moderate.
Resumo:
The study investigated the influence of double-pulse transcranial magnetic stimulation (dTMS) on memory-guided saccade triggering. Double pulses with interstimulus intervals (ISIs) of 35, 50, 65 or 80 ms were applied over the right frontal eye field (FEF) and as control over the occipital cortex. A significant dTMS effect was found exclusively for contralateral saccades; latency of memory-guided saccades was reduced after FEF stimulation with an ISI of 50 ms compared to latency without stimulation. This effect proved to be specific for the ISI of 50 ms over the FEF because control stimulation with the same ISI over the occipital cortex had no significant effect on latency of memory-guided saccades. The results of our study showed that, by using an appropriate ISI, dTMS is able to facilitate contralateral saccade triggering by stimulating the FEF. This suggests that TMS interferes specifically with saccade triggering mechanisms, probably by acting on presaccadic neurons of the FEF.
Resumo:
Trauma related haemorrhagic anaemia is rarely diagnosed by physical examination alone but typically includes measurement of blood haemoglobin, one of the most frequently ordered laboratory tests. Recently, noninvasive technologies have been developed that allow haemoglobin to be measured immediately without the need for intravenous access or having to take venous, arterial, or capillary blood. Moreover, with these technologies haemoglobin can be continuously measured in patients with active bleeding, to guide the start and stop of blood transfusions and to detect occult bleeding. Recent studies on the accuracy of the devices showed promising results in terms of accuracy of hemoglobin measurement compared to laboratory determination. The present review gives an overview on the technology itself and reviews the current literature on the subject.
Resumo:
The decomposition of soil organic matter (SOM) is temperature dependent, but its response to a future warmer climate remains equivocal. Enhanced rates of decomposition of SOM under increased global temperatures might cause higher CO2 emissions to the atmosphere, and could therefore constitute a strong positive feedback. The magnitude of this feedback however remains poorly understood, primarily because of the difficulty in quantifying the temperature sensitivity of stored, recalcitrant carbon that comprises the bulk (>90%) of SOM in most soils. In this study we investigated the effects of climatic conditions on soil carbon dynamics using the attenuation of the 14C ‘bomb’ pulse as recorded in selected modern European speleothems. These new data were combined with published results to further examine soil carbon dynamics, and to explore the sensitivity of labile and recalcitrant organic matter decomposition to different climatic conditions. Temporal changes in 14C activity inferred from each speleothem was modelled using a three pool soil carbon inverse model (applying a Monte Carlo method) to constrain soil carbon turnover rates at each site. Speleothems from sites that are characterised by semi-arid conditions, sparse vegetation, thin soil cover and high mean annual air temperatures (MAATs), exhibit weak attenuation of atmospheric 14C ‘bomb’ peak (a low damping effect, D in the range: 55–77%) and low modelled mean respired carbon ages (MRCA), indicating that decomposition is dominated by young, recently fixed soil carbon. By contrast, humid and high MAAT sites that are characterised by a thick soil cover and dense, well developed vegetation, display the highest damping effect (D = c. 90%), and the highest MRCA values (in the range from 350 ± 126 years to 571 ± 128 years). This suggests that carbon incorporated into these stalagmites originates predominantly from decomposition of old, recalcitrant organic matter. SOM turnover rates cannot be ascribed to a single climate variable, e.g. (MAAT) but instead reflect a complex interplay of climate (e.g. MAAT and moisture budget) and vegetation development.
Resumo:
We investigate causes of the stratigraphic variation revealed in a 177 km, 400 MHz short-pulse radar profile of firn from West Antarctica. The profile covers 56 m depth, and its direction was close to those of the ice flow and mean wind. The average, near-surface accumulation rates calculated from the time delays of one radar horizon consistently show minima on leeward slopes and maxima on windward slopes, confirming an earlier study based on stake observations. The stratigraphic variation includes up to 30 m depth variation in individual horizons over tens of km, fold limbs that become progressively steeper with depth, and fold-hinge loci that change direction or propagate down-ice with depth over distances far less than predicted by the ice speeds. We use an accumulation rate model to show how local rate anomalies and the effect of ice speed upon a periodic variation in accumulation rate cause these phenomena, and we reproduce two key features seen in the stratigraphic variations. We conclude that the model provides an explanation of changes in spatial stratigraphy and local measures of accumulation history given the constraints of surface topography, ice and wind velocities, and a general accumulation rate for an area.
Resumo:
We track dated firn horizons within 400 MHz short-pulse radar profiles to find the continuous extent over which they can be used as historical benchmarks to study past accumulation rates in West Antarctica. The 30-40 cm pulse resolution compares with the accumulation rates of most areas. We tracked a particular set that varied from 30 to 90 m in depth over a distance of 600 km. The main limitations to continuity are fading at depth, pinching associated with accumulation rate differences within hills and valleys, and artificial fading caused by stacking along dips. The latter two may be overcome through multi-kilometer distances by matching the relative amplitude and spacing of several close horizons, along with their pulse forms and phases. Modeling of reflections from thin layers suggests that the - 37 to - 50 dB range of reflectivity and the pulse waveforms we observed are caused by the numerous thin ice layers observed in core stratigraphy. Constructive interference between reflections from these close, high-density layers can explain the maintenance of reflective strength throughout the depth of the firn despite the effects of compaction. The continuity suggests that these layers formed throughout West Antarctica and possibly into East Antarctica as well.
Resumo:
Sound speed as a diagnostic marker for various diseases of human tissue has been of interest for a while. Up to now, mostly transmission ultrasound computed tomography (UCT) was able to detect spatially resolved sound speed, and its promise as a diagnostic tool has been demonstrated. However, UCT is limited to acoustically transparent samples such as the breast. We present a novel technique where spatially resolved detection of sound speed can be achieved using conventional pulse-echo equipment in reflection mode. For this purpose, pulse-echo images are acquired under various transmit beam directions and a two-dimensional map of the sound speed is reconstructed from the changing phase of local echoes using a direct reconstruction method. Phantom results demonstrate that a high spatial resolution (1 mm) and contrast (0.5 % of average sound speed) can be achieved suitable for diagnostic purposes. In comparison to previous reflection-mode based methods, CUTE works also in a situation with only diffuse echoes, and its direct reconstruction algorithm enables real-time application. This makes it suitable as an addition to conventional clinical ultrasound where it has the potential to benefit diagnosis in a multimodal approach. In addition, knowledge of the spatial distribution of sound speed allows full aberration correction and thus improved spatial resolution and contrast of conventional B-mode ultrasound. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.