985 resultados para POLY(P-PHENYLENEVINYLENE)
Resumo:
The taxonomic relationship between two toothed South African river crabs, Potamonautes warreni and P. unispinus, is unclear. The problem stems from the widespread variation in carapace dentition patterns amongst P. warreni individuals over its biogeographic range, where single toothed individuals may appear similar in carapace morphology to P. unispinus. Ten populations of P. warreni and 18 populations of P. unispinus were collected and the morphometric and genetic differentiation between the two taxa quantified. Patterns of morphometric and genetic variation were examined using multivariate statistics and protein gel electrophoresis, respectively. Principal component analyses of carapace characters showed that the two species are morphologically indistinguishable. However, discriminate functions analyses and additional statistical results corroborate the morphological distinction between the two taxa. Allozyme electrophoresis of 17 protein coding loci, indicated a close genetic similarity between the two species (I = 0.92). A fixed allelic difference at one locus (LT-2) and extensive genetic variability at another locus (PGM-1) indicate that two gene pools are present and that the two taxa are genetically isolated. Intraspecific genetic I values for both species were > 0.97 and indicated no apparent genetic structuring on a micro or macro-geographic scale. The variation in carapace dentition among P. warreni populations possesses no genetic basis and may possibly toe the product of ecogenesis. The value of dentition patterns in the systematics of river crabs is discussed. Dentition patterns among river crab species appear to be conserved and reliable as species specific diagnostic markers, but should ideally be used in combination with other morphological data sets and genetic evidence.
Resumo:
Motion of chains of poly(ethylene oxide) within the interlayer spacing of 2:1 phyllosilicate/montmorillonite was studied with H-1 and C-13 NMR spectroscopy. Measurements of the H-1 NMR line widths and relaxation times across a large temperature range were used to determine the effect of bulk thermal transitions on polymer chain motion within the nanocomposites. The results were consistent with previous reports of low apparent activation energies of motion. Details of the frequency and geometry of motion were obtained from a comparison of the C-13 cross-polarity/magic-angle spinning spectra and relaxation times of the nanocomposite with those of the pure polymer. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Type I diabetes is thought to occur as a result of the loss of insulin-producing pancreatic beta cells by an environmentally triggered autoimmune reaction. In rodent models of diabetes, streptozotocin (STZ), a genotoxic methylating agent that is targeted to the beta cells, is used to trigger the initial cell death. High single doses of STZ cause extensive beta -cell necrosis, while multiple low doses induce limited apoptosis, which elicits an autoimmune reaction that eliminates the remaining cells. We now show that in mice lacking the DNA repair enzyme alkylpurine-DNA-N-glycosylase (APNG), beta -cell necrosis was markedly attenuated after a single dose of STZ. This is most probably due to the reduction in the frequency of base excision repair-induced strand breaks and the consequent activation of poly(ADP-ribose) polymerase (PARP), which results in catastrophic ATP depletion and cell necrosis. Indeed, PARP activity was not induced in A-PNG(-/-) islet cells following treatment with STZ in vitro. However, 48 h after STZ treatment, there was a peak of apoptosis in the beta cells of APNG(-/-) mice. Apoptosis was not observed in PARP-inhibited APNG(+/+) mice, suggesting that apoptotic pathways are activated in the absence of significant numbers of DNA strand breaks. Interestingly, STZ-treated APNG(-/-) mice succumbed to diabetes 8 months after treatment, in contrast to previous work with PARP inhibitors, where a high incidence of beta -cell tumors was observed. In the multiple-low-dose model, STZ induced diabetes in both APNG(-/-) and APNG(-/-) mice; however, the initial peak of apoptosis was 2.5-fold greater in the APNG(-/-) mice. We conclude that APNG substrates are diabetogenic but by different mechanisms according to the status of APNG activity.
Resumo:
Problem: The present study was performed to explore the effects of pregnancy on experimental autoimmune encephalomyelitis (EAE) induced in Lewis rats by inoculation with myelin basic protein (MBP) (MBP-EAE). Method of study: MBP-EAE was induced in pregnant and non-pregnant rats and severity of disease evaluated. Serum from pregnant and non-pregnant rats was used in standard lymphocyte proliferation assays. Real-time polymerase chain reaction (PCR) was used to investigate the expression of cytokine mRNA in the inflammatory cells obtained from the spinal cord of rats on day 15 after inoculation. Results: Pregnant rats developed less severe disease than non-pregnant rats. Serum from pregnant rats suppressed the proliferation of T lymphocytes in response to MBP. There was significantly increased expression of IL-4. IL-10 and TNF-alpha mRNA in the spinal cord infiltrate of pregnant rats. Conclusion: Circulating humoral factors and alteration in cytokine production by inflammatory cells may contribute to the suppression of EAE in pregnant rats.
Resumo:
Cytokines produced by T-cells in periodontal lesions may determine the nature of the adaptive immune response. Since different antigen-7 presenting cells (APC) may direct the Th1/Th2 response, P. gingivalis-specific T-cell lines were established by different APC subpopulations, and their cytokine profiles were determined. Peripheral blood mononuclear cells induced similar percentages of IL-4+ and IFN-gamma+ T-cells and lower percentages of IL-10+ T-cells, Epstein-Barr virus-trans formed B-cells (LCL) induced higher percentages of IL-4+ cells than IFN-gamma+ cells, with lower percentages of IL-10+ cells. Peripheral blood mononuclear cells induced a higher percent of IFN-gamma+ CD8 cells than LCL (p = 0.004). Purified B-cells, monocytes, and dendritic cells induced similar percentages of IL-4+ and IFN-gamma+ cells, although again, the percentage of IL-10+ cells was lower. The results of the present study have demonstrated that, as measured by FACS analysis of intracytoplasmic cytokines, P. gingivalis-specific T-cells produce both Th1 and Th2 cytokines, regardless of the APC population.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
A two-dimensional numerical simulation model of interface states in scanning capacitance microscopy (SCM) measurements of p-n junctions is presented-In the model, amphoteric interface states with two transition energies in the Si band gap are represented as fixed charges to account for their behavior in SCM measurements. The interface states are shown to cause a stretch-out-and a parallel shift of the capacitance-voltage characteristics in the depletion. and neutral regions of p-n junctions, respectively. This explains the discrepancy between - the SCM measurement and simulation near p-n junctions, and thus modeling interface states is crucial for SCM dopant profiling of p-n junctions. (C) 2002 American Institute of Physics.
Resumo:
We generalize the basic concepts of the positive-P and Wigner representations to unstable quantum-optical systems that are based on nonorthogonal quasimodes. This lays the foundation for a quantum description of such systems, such as, for example an unstable cavity laser. We compare both representations by calculating the tunneling times for an unstable resonator optical parametric oscillator.
Resumo:
Low-cost UHF-band p-i-n diodes are used to develop high-performance L-band series and parallel switches. To stop the rectification of large RF, signals, the diodes are biased at a large reverse-bias voltage. Parasitic elements of the diodes are tuned out using LC circuits in biasing circuits without increasing the size of the switches. (C) 2002 John Wiley Sons, Inc.
Resumo:
Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.