982 resultados para PHOTON-EMISSION
Resumo:
We report the first measurement of two-photon absorption (TPA) and self-phase modulation in an InGaAsP/InP multi-quantum-well waveguide. The TPA coefficient, β2, was found to be 60±10 cm/GW at 1.55 μm. Despite operating at 200 nm from the band edge, self-phase modulation as high as 8±2 rad was observed for 30-ps optical pulses at 3.8-W peak input power. A theoretical calculation indicates that this enhanced phase modulation is primarily due to bandfilling in the quantum wells and the free-carrier plasma effect.
Resumo:
Thin films of diamond-like carbon (DLC) have been deposited using a novel photon-enhanced chemical vapour deposition (photo-CVD) method. This low energy method may be a way to produce better interfaces in electronic devices by reducing damage due to ion bombardment. Methane requires high energy photons for photolysis to take place and these are not transmitted in most photo-CVD methods owing to the presence of a window between the lamp and the deposition environment. In our photo-CVD system there is no window and all the high energy photons are transmitted into the reaction gas. Initial work has proved promising and this paper presents recent results. Films have been characterized by measuring electron energy loss spectra, by ellipsometry and by fabricating and testing diode structures. Results indicate that the films are of a largely amorphous nature and are semiconducting. Diode structures have on/off current ratios of up to 106.
Resumo:
For the first time, lasers have been used to induce a fast all-optical nonresonant nonlinearity at wavelengths well beyond the band edge in a GaAs/GaAlAs multiquantum well waveguide. Using a Q-switched diode laser, which gave optical pulses of 3.5 ps duration and 7 W peak power, an intensity-dependent transmission was recorded that was consistent with the presence of two photon absorption in the waveguide. The measured two photon absorption coefficient was 11 ± 2cm/GW.
Resumo:
Etched VCSEL sources are reported which avoid bandwidth collapse in multimode fibre using a simple coupling technique to control the launch. These devices have allowed better than over-filled launch bandwidth for alignment tolerances of ±7 microns.
Resumo:
The field emission behaviour of a series of Tetrahedrally Bonded Amorphous Carbon (ta-C) films has been measured. The films were produced using a Filtered Cathodic Vacuum Arc System. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have a threshold field of order 10-15 V/μm and optimally nitrogen-doped films exhibit fields as low as 5 V/μm. The emission as a function of back contact and front surface condition has also been considered and shows that the back contact has only a minor effect on emission efficiency. However, after etching in either an oxygen or hydrogen plasma, the films show a marked reduction in threshold field, down to as low as 2-3 V/μm, and a marked improvement in emission site density.
Resumo:
Field emission from a series of tetrahedrally bonded amorphous-carbon (ta-C) films, deposited in a filtered cathodic vacuum arc, has been measured. The threshold field for emission and current densities achievable have been investigated as a function of sp3/sp2 bonding ratio and nitrogen content. Typical as-grown undoped ta-C films have threshold fields of the order 10-15 V/μm and optimally nitrogen doped films exhibited fields as low as 5 V/μm. In order to gain further understanding of the mechanism of field emission, the films were also subjected to H2, Ar, and O2 plasma treatments and were also deposited onto substrates of different work function. The threshold field, emission current, emission site densities were all significantly improved by the plasma treatment, but little dependence of these properties on work function of the substrate was observed. This suggests that the main barrier to emission in these films is at the front surface.
Resumo:
Nanocluster carbon films grown using a cathodic arc process at room temperature in the presence of background gases such as helium are found to be good electron emitters. The variation in the surface morphology and the corresponding emission characteristics of the films with change in helium partial pressure (5×10-4 to 50 Torr) during film growth are reported. The effect of helium partial pressure on clustering was studied for films grown at nitrogen partial pressures of 10-4 and 10-3 Torr. The surface morphology of the films varied from smooth through clusters (with sizes 50-200 nm) to fibrous films. The threshold field varied from 1 to 10 V/μm for an emission current density 1 μA/cm2.
Resumo:
A novel device for detection of single photons based on a GaAs/AlGaAs modulation doped field effect transistor (MODFET) which does not rely on avalanche processes is proposed. The optimal channel electron densities and quantum dot parameters for detection of single photons are discussed.
Resumo:
The field emission properties of nanostructured carbon films deposited by cathodic vacuum arc in a He atmosphere have been studied by measuring the emission currents and the emission site density. The films have an onset field of ∼ 3 V/μm. The emission site density is viewed on a phosphor anode and it increases rapidly with applied field. It is assumed that the emission occurs from surface regions with a range of field enhancement factors but with a constant work function. The field enhancement factor is found to have an exponential distribution.
Resumo:
This paper will report on the production, dimensional control, and characterization of arrays of cold-cathode field emitters based on multiwall carbon nanotubes, suitable for use in large-area field-emission-based displays.
Resumo:
YBCO thin films are currently used in several HTS-based electronics applications. The performance of devices, which may include microwave passive components (filters, resonators), grain boundary junctions or spintronic multilayer structures, is determined by film quality, which in turn depends on the deposition technology used and growth parameters. We report on results from nonintrusive Optical Emission Spectroscopy of the plasma during YBCO thin film deposition in a high-pressure on-axis sputtering system under different conditions, including small trace gas additions to the sputtering gas. We correlate these results with the compositional and structural changes which affect the DC and microwave properties of YBCO films. Film morphology, composition, structure and in- and out-of-plane orientation were assessed; T, and microwave surface resistance measurements were made using inductive and resonator techniques. Comparison was made with films sputtered in an off-axis 2-opposing magnetron system.