939 resultados para PHOTON EXCHANGE MEMBRANE FUEL CELLS
Resumo:
Objective. This is an over-view of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. Study Design: After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheating glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. Methods: The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Results: Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic lesion of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of dopamine altered these indices enough to allow accurate differentiation of schizophrenics from control patients, leading to, possibly for the first time, an early objective diagnosis of schizophrenia and possible assessment of preventive strategies. OEGs from the nose were shown to be as effective as those from the olfactory bulb in promoting axonal growth across transected spinal cords even when added I month after injury in the rat. These otherwise paraplegic rats grew motor and proprioceptive and fine touch fibers with corresponding behavioral improvement. Conclusions. The tissues of the olfactory mucosa are readily available to the otolaryngologist. Being surface cells, they must regenerate (called neurogenesis). Biopsy of this area and amplification of cells in culture gives the scientist a window to the developing brain, including early diagnosis of schizophrenia. The Holy Grail of neurological disease is the cure of traumatic paraplegia and OEGs from the nose promote that repair. The otolaryngologist may become the necessary partner of the neurophysiologist and spinal surgeon to take the laboratory potential of paraplegic cure into the day-to-day realm of clinical reality.
Resumo:
The presence of a basal nonselective cation permeability was mainly investigated in primary cultures of rat cardiac microvascular endothelial cells (CMEC) by applying both the patch-clamp technique and Fura-2 microfluorimetry. With low EGTA in the pipette solution, the resting membrane potential of CMEC was -21.2 +/- 1.1 mV, and a Ca2+-activated Cl- conductance was present. When the intracellular Ca2+ was buffered with high EGTA, the membrane potential decreased to 5.5 +/- 1.2 mV. In this condition, full or partial substitution of external Na+ by NMDG(+) proportionally reduced the inward component of the basal I-V relationship. This current was dependent on extracellular monovalent cations with a permeability sequence of K+ > Cs+ > Na+ > Li+ and was inhibited by Ca2+, La3+, Gd3+, and amiloride. The K+/Na+ permeability ratio, determined using the Goldman-Hodgkin-Katz equation, was 2.01. The outward component of the basal I-V relationship was reduced when intracellular K+ was replaced by NMDG(+), but was not sensitive to substitution by Cs+. Finally, microfluorimetric experiments indicated the existence of a basal Ca2+ entry pathway, inhibited by La3+ and Gd3+. The basal nonselective cation permeability in CMEC could be involved both in the control of myocardial ionic homeostasis, according to the model of the blood-heart barrier, and in the modulation of Ca2+ -dependent processes. (C) 2002 Elsevier Science (USA).
Resumo:
The MUC1 mucin (CD227) is a cell surface mucin originally thought to be restricted to epithelial tissues. We report that CD227 is expressed on human blood dendritic cells (DC) and monocyte-derived DC following in vitro activation. Freshly isolated murine splenic DC had very low levels of CD227; however, all DC expressed CD227 following in vitro culture. In the mouse spleen, CD227 was seen on clusters within the red pulp and surrounding the marginal zone in the white pulp. Additionally, we confirm CD227 expression by activated human T cells and show for the first time that the CD227 cytoplasmic domain is tyrosine-phosphorylated in activated T cells and DC and is associated with other phosphoproteins, indicating a role in signaling. The function of CD227 on DC and T cells requires further elucidation.
Resumo:
Eph receptor tyrosine kinases and ephrins regulate morphogenesis in the developing embryo where they effect adhesion and motility of interacting cells. Although scarcely expressed in adult tissues, Eph receptors and ephrins are overexpressed in a range of tumours. In malignant melanoma, increased Eph and ephrin expression levels correlate with metastatic progression. We have examined cellular and biochemical responses of EphA3-expressing melanoma cell lines and human epithelial kidney 293T cells to stimulation with polymeric ephrin-A5 in solution and with surfaces of defined ephrin-A5 densities. Within minutes, rapid reorganisation of the actin and myosin cytoskeleton occurs through activation of RhoA, leading to the retraction of cellular protrusions, membrane blebbing and detachment, but not apoptosis. These responses are inhibited by monomeric ephrin-A5, showing that receptor clustering is required for this EphA3 response. Furthermore, the adapter CrkII, which associates with tyrosine-phosphorylated EphA3 in vitro, is recruited in vivo to ephrin-A5-stimulated EphA3. Expression of an SH3-domain mutated CrkII ablates cell rounding, blebbing and detachment. Our results suggest that recruitment of CrkII and activation of Rho signalling are responsible for EphA3-mediated cell rounding, blebbing and de-adhesion, and that ephrin-A5-mediated receptor clustering and EphA3 tyrosine kinase activity are essential for this response.
Resumo:
Aquaporin 1 (AQP1; also known as CHIP, a channel-forming integral membrane protein of 28 kDa) is the first protein to be shown to function as a water channel and has been recently shown to be present in the rat retina. We previously showed (Kim et al. [1998] Neurosci Lett 244:52-54) that AQP1-like immunoreactivity is present in a certain population of amacrine cells in the rat retina. This study was conducted to characterize these cells in more detail, With immunocytochemistry using specific antisera against AQP1, whole-mount preparations and 50-mum-thick vibratome sections were examined by light and electron microscopy. These cells were a class of amacrine cells, which had symmetric bistratified dendritic trees ramified in stratum 2 and in the border of strata 3 and 4 of the inner plexiform layer (IPL). Their dendritic field diameters ranged from 90 to 230 mum. Double labeling with antisera against AQP1 and gamma-aminobutyric acid or glycine demonstrated that these AQP1-like-immunoreactive amacrine cells were immunoreactive for glycine. Their most frequent synaptic input was from other amacrine cell processes in both sublaminae a and b of the IPL, followed by a few cone bipolar cells. Their primary targets were other amacrine cells and ganglion cells in both sublaminae a and b of the IPL. In addition, synaptic output Onto bipolar cells was rarely observed in sublamina b of the IPL. Thus, the AQP1 antibody labels a class of glycinergic amacrine cells with small to medium-sized dendritic fields in the rat retina. (C) 2002 Wiley-Liss, Inc.
Resumo:
The mechanisms involved in angiotensin II type 1 receptor (AT(1)-R) trafficking and membrane localization are largely unknown. In this study, we examined the role of caveolin in these processes. Electron microscopy of plasma membrane sheets shows that the AT(1)-R is not concentrated in caveolae but is clustered in cholesterol-independent microdomains; upon activation, it partially redistributes to lipid rafts. Despite the lack of AT(1)-R in caveolae, AT(1)-R. caveolin complexes are readily detectable in cells co-expressing both proteins. This interaction requires an intact caveolin scaffolding domain because mutant caveolins that lack a functional caveolin scaffolding domain do not interact with AT(1)-R. Expression of an N-terminally truncated caveolin-3, CavDGV, that localizes to lipid bodies, or a point mutant, Cav3-P104L, that accumulates in the Golgi mislocalizes AT(1)-R to lipid bodies and Golgi, respectively. Mislocalization results in aberrant maturation and surface expression of AT(1)-R, effects that are not reversed by supplementing cells with cholesterol. Similarly mutation of aromatic residues in the caveolin-binding site abrogates AT(1)-R cell surface expression. In cells lacking caveolin-1 or caveolin-3, AT(1)-R does not traffic to the cell surface unless caveolin is ectopically expressed. This observation is recapitulated in caveolin-1 null mice that have a 55% reduction in renal AT(1)-R levels compared with controls. Taken together our results indicate that a direct interaction with caveolin is required to traffic the AT(1)-R through the exocytic pathway, but this does not result in AT(1)-R sequestration in caveolae. Caveolin therefore acts as a molecular chaperone rather than a plasma membrane scaffold for AT(1)-R.
Resumo:
The small GTPases R-Ras and H-Ras are highly homologous proteins with contrasting biological properties, for example, they differentially modulate integrin affinity: H-Ras suppresses integrin activation in fibroblasts whereas R-Ras can reverse this effect of H-Ras. To gain insight into the sequences directing this divergent phenotype, we investigated a panel of H-Ras/R-Ras chimeras and found that sequences in the R-Ras hypervariable C-terminal region including amino acids 175-203 are required for the R-Ras ability to increase integrin activation in CHO cells; however, the proline-rich site in this region, previously reported to bind the adaptor protein Nck, was not essential for this effect. In addition, we found that the GTPase TC21 behaved similarly to R-Ras. Because the C-termini of Ras proteins can control their subcellular localization, we compared the localization of H-Ras and R-Ras. In contrast to H-Ras, which migrates out of lipid rafts upon activation, we found that activated R-Ras remained localized to lipid rafts. However, functionally distinct H-Ras/R-Ras chimeras containing different C-terminal R-Ras segments localized to lipid rafts irrespective of their integrin phenotype. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein (LMP) 1, which is consistently expressed in multiple EBV-associated malignancies, has been proposed as a potential target antigen for any future vaccine designed to control these malignancies. However, the high degree of genetic variation in the LMP1 sequence has been considered a major impediment for its use as a potential immunotherapeutic target for the treatment of EBV-associated malignancies. In the present study, we have employed a highly efficient strategy, based on ex vivo functional assays, to conduct an extensive sequence-wide analysis of LMP1-specific T-cell responses in a large panel of healthy virus carriers of diverse ethnic origin and nasopharyngeal carcinoma patients. By comparing the frequencies of T cells specific for overlapping peptides spanning LMP1, we mapped a number of novel HLA class I- and class II-restricted LMP1 T-cell epitopes, including an epitope with dual HLA class I restriction. More importantly, extensive sequence analysis of LMP1 revealed that the majority of the T-cell epitopes were highly conserved in EBV isolates from Caucasian, Papua New Guinean, African, and Southeast Asian populations, while unique geographically constrained genetic variation was observed within one HLA A2 supertype-restricted epitope. These findings indicate that conserved LMP1 epitopes should be considered in designing epitope-based immunotherapeutic strategies against EBV-associated malignancies in different ethnic populations.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with growth regulatory and immunomodulatory properties. It is an extracellular form of the mitochondrial matrix protein chaperonin 10 (Cpn10), a molecular chaperone. An understanding of the mechanism of action of EPF and an exploration of therapeutic potential has been limited by availability of purified material. The present study was undertaken to develop a simple high-yielding procedure for preparation of material for structure/function studies, which could be scaled up for therapeutic application. Human EPF was expressed in Sf9 insect cells by baculovirus infection and in Escherichia coli using a heat inducible vector. A modified molecule with an additional N-terminal alanine was also expressed in E coli. The soluble protein was purified from cell lysates via anion exchange (negative-binding mode), cation exchange, and hydrophobic interaction chromatography, yielding similar to42 and 36 mg EPF from 300 ml bacterial and I L Sf9 cultures, respectively. The preparations were highly purified ( greater than or equal to99% purity on SDS-PAGE for the bacterial products and greater than or equal to97% for that of insect cells) and had the expected mass and heptameric structure under native conditions, as determined by mass spectrometry and gel permeation chromatography, respectively. All recombinant preparations exhibited activity in the EPF bioassay, the rosette inhibition test, with similar potency both to each other and to the native molecule. In two in vivo assays of immuno suppressive activity, the delayed-type hypersensitivity reaction and experimental autoimmune encephalomyelitis, the insect cell and modified bacterial products, both with N-terminal additions (acetylation or amino acid), exhibited similar levels of suppressive activity, but the bacterial product with no N-terminal modification had no effect in either assay. Studies by others have shown that N-terminal addition is not necessary for Cpn10 activity. By defining techniques for facile production of molecules with and without immunosuppressive properties, the present studies make it possible to explore mechanisms underlying the distinction between EPF and Cpn10 activity. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Caveolins have been identified as key components of caveolae, specialized cholesterol-enriched raft domains visible as small flask-shaped invaginations of the plasma membrane. In polarized MDCK cells caveolin-1 and -2 are found together on basolateral caveolae whereas the apical membrane, where only caveolin-1 is present, lacks caveolae. Expression of a caveolin mutant prevented the formation of the large caveolin-1/-2 hetero-oligomeric complexes, and led to intracellular retention of caveolin-2 and disappearance of caveolae from the basolateral membrane. Correspondingly, in MDCK cells over-expressing caveolin-2 the basolateral membrane exhibited an increased number of caveolae. These results indicate the involvement of caveolin-2 in caveolar biogenesis. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Proteins of the annexin family are believed to be involved in membrane-related processes, but their precise functions remain unclear. Here, we have made use of several experimental approaches, including pathological conditions, RNA interference and in vitro transport assays, to study the function of annexin II in the endocytic pathway. We find that annexin II is required for the biogenesis of multivesicular transport intermediates destined for late endosomes, by regulating budding from early endosomes-but not the membrane invagination process. Hence, the protein appears to be a necessary component of the machinery controlling endosomal membrane dynamics and multivesicular endosome biogenesis. We also find that annexin II interacts with cholesterol and that its subcellular distribution is modulated by the subcellular distribution of cholesterol, including in cells from patients with the cholesterol-storage disorder Niemann-Pick C. We conclude that annexin II forms cholesterol-containing platforms on early endosomal membranes, and that these platforms regulate the onset of the degradation pathway in animal cells.
Resumo:
E-cadherin-catenin complexes mediate cell-cell adhesion on the basolateral membrane of epithelial cells. The cytoplasmic tail of E-cadherin supports multiple protein interactions, including binding of beta-catenin at the C terminus and of p120(ctn) to the juxtamembrane domain. The temporal assembly and polarized trafficking of the complex or its individual components to the basolateral membrane are not fully understood. In Madin-Darby canine kidney cells at steady state and after treatment with cycloheximide or temperature blocks, E-cadherin and beta-catenin localized to the Golgi complex, but p120ctn was found only at the basolateral plasma membrane. We previously identified a dileucine sorting motif (Leu(586)-Leu(587), termed S1) in the juxtamembrane domain of E-cadherin and now show that it is required to target full-length E-cadherin to the basolateral membrane. Removal of S1 resulted in missorting of E-cadherin mutants (EcadDeltaS1) to the apical membrane; beta-catenin was simultaneously missorted and appeared at the apical membrane. p120(ctn) was not mistargeted with EcadDeltaS1, but could be recruited to the E-cadherin-catenin complex only at the basolateral membrane. These findings help define the temporal assembly and sorting of the E-cadherin-catenin complex and show that membrane recruitment of p120(ctn) in polarized cells is contextual and confined to the basolateral membrane.
Resumo:
Activation of macrophages with lipopolysaccharide (LPS) induces the rapid synthesis and secretion of proinflammatory cytokines, such as tumor necrosis factor (TNFalpha), for priming the immune response [1, 2]. TNFalpha plays a key role in inflammatory disease [3]; yet, little is known of the intracellular trafficking events leading to its secretion. In order to identify molecules involved in this secretory pathway, we asked whether any of the known trafficking proteins are regulated by LPS. We found that the levels of SNARE proteins were rapidly and significantly up- or downregulated during macrophage activation. A subset of t-SNAREs (Syntaxin 4/SNAP23/Munc18c) known to control regulated exocytosis in other cell types [4, 5] was substantially increased by LPS in a temporal pattern coinciding with peak TNFalpha secretion. Syntaxin 4 formed a complex with Munc18c at the cell surface of macrophages. Functional studies involving the introduction of Syntaxin 4 cDNA or peptides into macrophages implicate this t-SNARE in a rate-limiting step of TNFalpha secretion and in membrane ruffling during macrophage activation. We conclude that in macrophages, SNAREs are regulated in order to accommodate the rapid onset of cytokine secretion and for membrane traffic associated with the phenotypic changes of immune activation. This represents a novel regulatory role for SNAREs in regulated secretion and in macrophage-mediated host defense.
Resumo:
The endocytosis of E-cadherin has recently emerged as an important determinant of cadherin function with the potential to participate in remodeling adhesive contacts. In this study we focused on the initial fate of E-cadherin when it predominantly exists free on the cell surface prior to adhesive binding or incorporation into junctions. Surface-labeling techniques were used to define the endocytic itinerary of E-cadherin in MCF-7 cells and in Chinese hamster ovary cells stably expressing human E-cadherin. We found that in this experimental system E-cadherin entered a transferrin-negative compartment before transport to the early endosomal compartment, where it merged with classical clathrin-mediated uptake pathways. E-cadherin endocytosis was inhibited by mutant dynamin, but not by an Eps15 mutant that effectively blocked transferrin internalization. Furthermore, sustained signaling by the ARF6 GTPase appeared to trap endocytosed E-cadherin in large peripheral structures. We conclude that in isolated cells unbound E-cadherin on the cell surface is predominantly endocytosed by a clathrin-independent pathway resembling macropinocytotic internalization, which then fuses with the early endosomal system. Taken with earlier reports, this suggests the possibility that multiple pathways exist for E-cadherin entry into cells that are likely to reflect cell context and regulation.
Resumo:
Galpha interacting protein (GAIP) is a regulator of G protein signaling protein that associates dynamically with vesicles and has been implicated in membrane trafficking, although its specific role is not yet known. Using an in vitro budding assay, we show that GAIP is recruited to a specific population of trans-Golgi network-derived vesicles and that these are distinct from coatomer or clathrin-coated vesicles. A truncation mutant (NT-GAIP) encoding only the N-terminal half of GAIP is recruited to trans -Golgi network membranes during the formation of vesicle carriers. Overexpression of NT-GAIP induces the formation of long, coated tubules, which are stabilized by microtubules. Results from the budding assay and from imaging in live cells show that these tubules remain attached to the Golgi stack rather than being released as carrier vesicles. NT-GAIP expression blocks membrane budding and results in the accumulation of tubular carrier intermediates. NT-GAIP-decorated tubules are competent to load vesicular stomatitis virus protein G-green fluorescent protein as post-Golgi, exocytic cargo and in cells expressing NT-GAIP there is reduced surface delivery of vesicular stomatitis virus protein G-green fluorescent protein. We conclude that GAIP functions as an essential part of the membrane budding machinery for a subset of post-Golgi exocytic carriers derived from the trans-Golgi network.