985 resultados para PERIPHERAL-NERVE INJURY
Resumo:
The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In the present study we evaluated the role of purinergic mechanisms in the PVN on the tonic modulation of the autonomic function to the cardiovascular system as well on the cardiovascular responses to peripheral chemoreflex activation in awake rats Guide-cannulae were bilaterally Implanted in the direction of the PVN of male Wistar rats Femoral artery and vein were catheterized one day before the experiments Chemoreflex was activated with KCN (30 mu g/0 05 ml iv) before and after microinjections of P2 receptors antagonist into the PVN Microinjection of PPADS a non selective P2X antagonist Into the PVN (n = 6) produced a significant increase in the baseline MAP (99 +/- 2 vs 112 +/- 3 mmHg) and HR (332 +/- 8 vs 375 +/- 8 bpm) but had no effect on the pressor and bradycardic responses to chemoreflex activation Intravenous injection of vasopres in receptors antagonist after microinjection of PPADS into the PVN produced no effect on the increased baseline MAP Simultaneous microinjection of PPADS and KYN into the PVN (n=6) had no effect in the baseline MAP HR or in the pressor and bradycardic responses to chemoreflex activation We conclude that P2 purinoceptors in the PVN are involved in the modulation of baseline autonomic function to the cardiovascular system but not in the cardiovascular responses to chemoreflex activation in awake rats (C) 2010 Elsevier B V All rights reserved
Resumo:
The role of nitric oxide (NO) in the caudal NTS (cNTS) on baseline cardiovascular and respiratory parameters and on changes in respiratory frequency (fR) and cardiovascular responses to chemoreflex activation was evaluated in awake rats. Bilateral microinjections of L-NAME (200 nmoles/50 nL), a non-selective NO synthase (NOS) inhibitor, into the cNTS increased baseline arterial pressure, while microinjections of NPLA (3 pmoles/50 nL), a selective neuronal NOS (nNOS) inhibitor, did not. L-NAME or N-PLA microinjected into the cNTS reduced the increase in fR in response to chemoreflex activation but not cardiovascular responses. These data show that (a) NO produced by non-nNOS in the cNTS is involved in the baseline autonomic control and (b) NO produced by nNOS in the cNTS is involved in modulation of the increase in fR in response to chemoreflex activation but not in the cardiovascular responses. We conclude that NO produced by the neuronal and endothelial NOS play a different role in the cNTS neurons integral to autonomic and respiratory pathways. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Molkov YI, Zoccal DB, Moraes DJ, Paton JF, Machado BH, Rybak IA. Intermittent hypoxia-induced sensitization of central chemoreceptors contributes to sympathetic nerve activity during late expiration in rats. J Neurophysiol 105: 3080-3091, 2011. First published April 6, 2011; doi:10.1152/jn.00070.2011.-Hypertension elicited by chronic intermittent hypoxia (CIH) is associated with elevated activity of the thoracic sympathetic nerve (tSN) that exhibits an enhanced respiratory modulation reflecting a strengthened interaction between respiratory and sympathetic networks within the brain stem. Expiration is a passive process except for special metabolic conditions such as hypercapnia, when it becomes active through phasic excitation of abdominal motor nerves (AbN) in late expiration. An increase in CO(2) evokes late-expiratory (late-E) discharges phase-locked to phrenic bursts with the frequency increasing quantally as hypercapnia increases. In rats exposed to CIH, the late-E discharges synchronized in AbN and tSN emerge in normocapnia. To elucidate the possible neural mechanisms underlying these phenomena, we extended our computational model of the brain stem respiratory network by incorporating a population of presympathetic neurons in the rostral ventrolateral medulla that received inputs from the pons, medullary respiratory compartments, and retrotrapezoid nucleus/parafacial respiratory group (RTN/pFRG). Our simulations proposed that CIH conditioning increases the CO(2) sensitivity of RTN/pFRG neurons, causing a reduction in both the CO(2) threshold for emerging the late-E activity in AbN and tSN and the hypocapnic threshold for apnea. Using the in situ rat preparation, we have confirmed that CIH-conditioned rats under normal conditions exhibit synchronized late-E discharges in AbN and tSN similar to those observed in control rats during hypercapnia. Moreover, the hypocapnic threshold for apnea was significantly lowered in CIH-conditioned rats relative to that in control rats. We conclude that CIH may sensitize central chemoreception and that this significantly contributes to the neural impetus for generation of sympathetic activity and hypertension.
Resumo:
Despite the well-established sympathoexcitation evoked by chemoreflex activation, the specific sub-regions of the CNS underlying such sympathetic responses remain to be fully characterized. In the present study we examined the effects of intermittent chemoreflex activation in awake rats on Fos-immunoreactivity (Fos-ir) in various subnuclei of the paraventricular nucleus of the hypothalamus (PVN), as well as in identified neurosecretory preautonomic PVN neurons. In response to intermittent chemoreflex activation, a significant increase in the number of Fos-ir cells was found in autonomic-related PVN subnuclei, including the posterior parvocellular, ventromedial parvocellular and dorsal-cap, but not in the neurosecretory magnocellular-containing lateral magnocellular subnucleus. No changes in Fos-ir following chemoreflex activation were observed in the anterior PVN subnucleus. Experiments combining Fos immunohistochemistry and neuronal tract tracing techniques showed a significant increase in Fos-ir in rostral ventrolateral medulla (RVLM)-projecting (PVN-RVLM), but not in nucleus of solitarii tract (NTS)-projecting PVN neurons. In summary, our results support the involvement of the PVN in the central neuronal circuitry activated in response to chemoreflex activation, and indicate that PVN-RVLM neurons constitute a neuronal substrate contributing to the sympathoexcitatory component of the chemoreflex. Published by Elsevier Ltd on behalf of IBRO.
Resumo:
Chronic intermittent hypoxia (CIH) in rats produces changes in the central regulation of cardiovascular and respiratory systems by unknown mechanisms. We hypothesized that CIH (6% O(2) for 40 s, every 9 min, 8 h day(-1)) for 10 days alters the central respiratory modulation of sympathetic activity. After CIH, awake rats (n = 14) exhibited higher levels of mean arterial pressure than controls (101 +/- 3 versus 89 +/- 3 mmHg, n = 15, P < 0.01). Recordings of phrenic, thoracic sympathetic, cervical vagus and abdominal nerves were performed in the in situ working heart-brainstem preparations of control and CIH juvenile rats. The data obtained in CIH rats revealed that: (i) abdominal (Abd) nerves exhibited an additional burst discharge in late expiration; (ii) thoracic sympathetic nerve activity (tSNA) was greater during late expiration than in controls (52 +/- 5 versus 40 +/- 3%; n = 11, P < 0.05; values expressed according to the maximal activity observed during inspiration and the noise level recorded at the end of each experiment), which was not dependent on peripheral chemoreceptors; (iii) the additional late expiratory activity in the Abd nerve correlated with the increased tSNA; (iv) the enhanced late expiratory activity in the Abd nerve unique to CIH rats was accompanied by reduced post-inspiratory activity in cervical vagus nerve compared to controls. The data indicate that CIH rats present an altered pattern of central sympathetic-respiratory coupling, with increased tSNA that correlates with enhanced late expiratory discharge in the Abd nerve. Thus, CIH alters the coupling between the central respiratory generator and sympathetic networks that may contribute to the induced hypertension in this experimental model.
Resumo:
Oxidative stress plays an important role in the development of cognitive impairment in sepsis. Here we assess the effects of acute and extended administration of cannabidiol (CBD) on oxidative stress parameters in peripheral organs and in the brain, cognitive impairment, and mortality in rats submitted to sepsis by cecal ligation and perforation (CLP). To this aim, male Wistar rats underwent either sham operation or CLP. Rats subjected to CLP were treated by intraperitoneal injection with ""basic support"" and CBD (at 2.5, 5, or 10 mg/kg once or daily for 9 days after CLP) or vehicle. Six hours after CLP (early times), the rats were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus, striatum, and cortex) were obtained and assayed for thiobarbituric acid reactive species (TBARS) formation and protein carbonyls. On the 10th day (late times), the rats were submitted to the inhibitory avoidance task. After the test, the animals were killed and samples from lung, liver, kidney, heart, spleen, and brain (hippocampus) were obtained and assayed for TBARS formation and protein carbonyls. The acute and extended administration of CBD at different doses reduced TBARS and carbonyl levels in some organs and had no effects in others, ameliorated cognitive impairment, and significantly reduced mortality in rats submitted to CLP. Our data provide the first experimental demonstration that CBD reduces the consequences of sepsis induced by CLP in rats, by decreasing oxidative stress in peripheral organs and in the brain, improving impaired cognitive function, and decreasing mortality. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal `dominant optic atrophy plus` variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44-6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08-4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment.
Resumo:
This study describes increased sarcolemmal permeability and myofilamentar damage that occur together with lipid peroxidation and protein nitration in the myocardium in severe sepsis induced by cecal ligation and puncture. Male C57BL/6 mice were submitted to moderate and severe septic injury and sham operation. Using light and laser confocal microscopy, diffuse foci of myocytolysis associated with focal disruption of the actin/myosin contractile apparatus could be seen in hearts with severe septic injury. The myocardial expressions of the sarcomeric proteins myosin and actin were downregulated by both severe and moderate injuries. The detection of albumin staining in the cytoplasm of myocytes to evaluate sarcolemmal permeability provided evidence of severe and mild injury of the plasma membrane in hearts with severe and moderate septic injury, respectively. The administration of a superoxide scavenger caused marked reduction of sarcolemmal permeability, indicating the involvement of free radicals in its genesis. On electron microscopy, these changes were seen to correspond to spread blocks of a few myocytes with fragmentation and dissolution of myofibrils, intracellular edema, and, occasionally, rupture of the sarcolemma. In addition, oxidative damage to lipids, using anti-4-hydroxynonenal, an indicator of oxidative stress and disruption of plasma membrane lipids, and to proteins, using antinitrotyrosine, a stable biomarker of peroxynitrite-mediated protein nitration, was demonstrated. These findings make plausible the hypothesis that increased sarcolemmal permeability might be a primary event in myocardial injury in severe sepsis possibly due to oxidative damage to lipids and proteins that could precede phenotypic changes that characterize a septic cardiomyopathy.
Resumo:
Despite numerous literature reports on the morphometry of the myelinated fibers of phrenic nerves in rats, a systematic study of the longitudinal and lateral symmetry of the unmyelinated fibers morphometry is not available. In this study, we have undertaken ultrastructural and morphometric studies of the phrenic nerve in adult rats, assessing two different levels (proximal and distal) from both right and left sides. Phrenic nerves of adult male Wistar rats were prepared for epoxy resin embedding and transmission electron microscopy. Morphometric analysis was performed with the aid of computer software, which took into consideration the unmyelinated fiber number, density, area, and diameter, as well as ratio between myelinated and unmyelinated fibers, and the percentage of the fascicular area occupied by the myelinated and unmyelinated fibers. Comparison of data from proximal and distal segments on the same side and from the same levels between sides was performed. Differences were considered significant when P < 0.05. The most important finding is that morphometric parameters of the phrenic nerve unmyelinated fibers in adult rats are both longitudinally and laterally symmetric. This study adds important morphometric information about the unmyelinated fibers of the phrenic nerves in adult rats for proximal and distal levels on both sides of the animal. Anat Rec, 292:513-517, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.
Resumo:
The mechanism of isoproterenol-induced myocardial damage is unknown, but a mismatch of oxygen supply vs. demand following coronary hypotension and myocardial hyperactivity is the best explanation for the complex morphological alterations observed. Severe alterations in the structural integrity of the sarcolemma of cardiomyocytes have been demonstrated to be caused by isoproterenol. Taking into account that the sarcolemmal integrity is stabilized by the dystrophin-glycoprotein complex (DGC) that connects actin and laminin in contractile machinery and extracellular matrix and by integrins, this study tests the hypothesis that isoproterenol affects sarcolemmal stability through changes in the DGC and integrins. We found different sensitivity of the DGC and integrin to isoproterenol subcutaneous administration. Immunofluorescent staining revealed that dystrophin is the most sensitive among the structures connecting the actin in the cardiomyocyte cytoskeleton and the extracellular matrix. The sarcomeric actin dissolution occurred after the reduction or loss of dystrophin. Subsequently, after lysis of myofilaments, gamma-sarcoglycan, beta-dystroglycan, beta 1-integrin, and laminin alpha-2 expressions were reduced followed by their breakdown, as epiphenomena of the myocytolytic process. In conclusion, administration of isoproterenol to rats results in primary loss of dystrophin, the most sensitive among the structural proteins that form the DGC that connects the extracellular matrix and the cytoskeleton in cardiomyocyte. These changes, related to ischaemic injury, explain the severe alterations in the structural integrity of the sarcolemma of cardiomyocytes and hence severe and irreversible injury induced by isoproterenol.