848 resultados para PERIPHERAL NEUROPATHY
Resumo:
Objective: In this preliminary study we tested the effect of short-term carbohydrate supplementation on carbohydrate oxidation and walking performance in peripheral arterial disease. Methods: Eleven patients with peripheral arterial disease and intermittent claudication and 8 healthy control subjects completed several weeks of baseline exercise testing, then were given supplementation for 3 days with a carbohydrate solution and placebo. Maximal walking time was assessed with a graded treadmill test. Carbohydrate oxidation during a submaximal phase of this test was measured with indirect calorimetry. At the end of baseline testing a biopsy specimen was taken from the gastrocnemius muscle, and the active fraction of pyruvate dehydrogenase complex activity was determined. Results: Carbohydrate supplementation resulted in a significant increase in body weight and carbohydrate oxidation during exercise in patients with intermittent claudication and control subjects. Maximal walking time decreased by 3% in control subjects, whereas it increased by 6% in patients with intermittent claudication (group X treatment interaction, P < .05). There was a wide range of performance responses to carbohydrate supplementation among patients with claudication (-3%-37%). This effect was greater in poorer performers, and was negatively correlated (P < .05) with muscle pyruvate dehydrogenase complex activity. Conclusion: Preliminary data suggest that carbohydrate oxidation during exercise might contribute to exercise intolerance in more dysfunctional patients with intermittent claudication and that carbohydrate supplementation might be an effective therapeutic intervention in these patients.
Resumo:
In the present study, we tested the hypothesis that walking intolerance in intermittent claudication (IC) is related to both slowed whole body oxygen uptake (Vo(2)) kinetics and altered activity of the active fraction of the pyruvate dehydrogenase complex (PDCa) in skeletal muscle. Ten patients with IC and peripheral arterial disease [ankle/brachial index (ABI) = 0.73 +/- 0.13] and eight healthy controls (ABI = 1. 17 +/- 0.13) completed three maximal walking tests. From these tests, averaged estimates of walking time, peak Vo(2) and the time constant of Vo(2) (tau) during submaximal walking were obtained. A muscle sample was taken from the gastrocnemius medialis muscle at rest and analysed for PDCa and several other biochemical variables. Walking time and peak Vo(2) were approx. 50 % lower in patients with IC than controls, and tau was 2-fold higher (P < 0.05). r was significantly correlated with walking time (r = -0.72) and peak Vo(2) (r = -0.66) in patients with IC, but not in controls. PDCa was not significantly lower in patients with IC than controls; however, PDCa tended to be correlated with tau (r = -0.56, P = 0.09) in patients with IC, but not in controls (r = -0.14). A similar correlation was observed between resting ABI and tau (r = -0.63, P = 0.05) in patients with IC. These data suggest that the impaired Vo(2) kinetics contributes to walking intolerance in IC and that, within a group of patients with IC, differences in Vo(2) kinetics might be partly linked to differences in muscle carbohydrate oxidation.
Resumo:
Peripheral arterial disease (PAD) is an obstructive condition where the flow of blood through peripheral arteries is impeded. During periods of increased oxygen demand (e.g. during exercise), peripheral limb ischaemia occurs, resulting in the sensation of muscle pain termed 'claudication'. As a result of claudication, subjects' ability to exercise is greatly reduced affecting their quality of life. Although many treatment options for patients with PAD exist, exercise training is an effective and low-cost means of improving functional ability and quality of life. Currently, there are limited specific recommendations to assist the exercise prescription and programming of these individuals. This review summarises data from 28 exercise training studies conducted in patients with PAD and formulates recommendations based on their results. Exercise training for patients with PAD should involve three training sessions per week comprising 45 minutes of intermittent treadmill walking in a supervised environment for a time period of 20 weeks or more. Encouragement and direction is given to further research aimed at investigating the effectiveness of training programmes in these patients.
Resumo:
The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on quality of life (QoL), and to determine the effect of participating in a mixed-type, moderate-intensity exercise program on QoL. It was also an objective to determine the relationship between peak aerobic capacity and QoL in PBST patients. QoL was assessed via the CARES questionnaire and peak aerobic capacity by a maximal graded treadmill test, pretransplant (PI), post transplant (PII) and following a 12-week intervention period (PIII). At PII, 12 patients were divided equally into a control or exercise intervention group. Undergoing a PBST was associated with a statistically but not clinically significant decline in QoL (P < 0.05). Following the intervention, exercising patients demonstrated an improved QoL when compared with pretransplant ratings (P < 0.01) and nonexercising transplant patients (P < 0.05). Moreover, peak aerobic capacity and QoL were correlated (P < 0.05). The findings demonstrated that exercise participation following oncology treatment is associated with a reduction in the number and severity of endorsed problems, which in turn leads to improvements in global, physical and psychosocial QoL. Furthermore, a relationship between fitness and QoL exists, with those experiencing higher levels of fitness also demonstrating higher QoL.
Resumo:
Primary olfactory neurons situated in the nasal septum project axons within fascicles along a highly stereotypical trajectory en route to the olfactory bulb. The ventral fascicles make a distinct dorsovental turn at the rear of the septum so as to reach the olfactory bulb. In the present study we have used a brain and nasal septum coculture system to examine the role of target tissue on the peripheral trajectory of olfactory sensory axons. In cultures of isolated embryonic nasal septa, olfactory axons form numerous parallel fascicles that project caudally in the submucosa, as they do in vivo. The ventral axon fascicles in the septum, however, often fail to turn, and do not project dorsally towards the roof of the nasal cavity. The presence of olfactory bulb, cortical, or tectal tissue apposed to the caudal end of the septum rescued this phenotype, causing the ventral fascicles to follow a normal in vivo-like trajectory. Ectopic placements of the explants revealed that brain tissue is not tropic for olfactory axons but appears to maintain the peripheral trajectory of growing axons in the nasal septum. Although primary olfactory axons are able to penetrate into olfactory bulb in vitro, they only superficially enter cortical tissue, whereas they do not grow into tectal explants. The ability of axons to differentially grow into different brain regions was shown to be unrelated to the migratory behavior of olfactory ensheathing cells, indicating that olfactory axons are directly responsive to guidance cues in the brain. (C) 2004 Wiley Periodicals, Inc.
Resumo:
An increase in left ventricular mass (LVM) occurs in the presence of type 2 diabetes, apparently independent of hypertension (1), but the determinants of this process are unknown. Brachial blood pressure is not representative of that at the ascending aorta (2) because the pressure wave is amplified from central to peripheral arteries. Central blood pressure is probably more clinically important since local pulsatile pressure determines adverse arterial and myocardial remodeling (3,4). Thus, an inaccurate assessment of the contribution of arterial blood pressure to LVM may occur if only brachial blood pressure is taken into consideration. In this study we sought the contribution of central blood pressure (and other interactive factors known to affect wave reflection, e.g., glycemic control and total arterial compliance) to LVM in patients with type 2 diabetes.
Resumo:
Angiography is usually performed as the preoperative road map for those requiring revascularization for lower extremity peripheral arterial disease (PAD). The alternative investigations are ultrasound, 3-D magnetic resonance angiography (3-D MRA) and computed tomography angiography. This pilot study aimed to assess whether 3-D MRA could replace the gold standard angiography in preoperative planning. Eight patients considered for aortoiliac or infrainguinal arterial bypass surgery were recruited. All underwent both imaging modalities within 7 days. A vascular surgeon and a radiologist each reported on the images from both the 3-D MRA and the angiography, with blinding to patient details and each others reports. Comparisons were made between the reports for the angiographic and the 3-D MRA images, and between the reports of the vascular surgeon and the radiologist. Compared to the gold standard angiogram, 3-D MRA had a sensitivity of 77% and specificity of 94% in detecting occlusion, and a sensitivity of 72% and specificity of 90% in differentiating high grade (> 50%) versus low grade (< 50%) stenoses. There was an overall concordance of 78% between the two investigations with a range of 62% in the peroneal artery to 94% in the aorta. 3-D MRA showed flow in 23% of cases where conventional angiography showed no flow. In the present pilot study, 3-D MRA had reasonable concordance with the gold standard angiography, depending on the level of the lesion. At times it showed vessel flow where occlusion was shown on conventional angiogram. 3-D MRA in peripheral vascular disease is challenging the gold standard, but is inconsistent at present.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.
Resumo:
The aim of this study was to assess the sensitivity and specificity of catheter-drawn and peripheral blood cultures. Paired blood culture samples collected over a 44-month period from a 280 bed Brisbane metropolitan hospital were analysed, using standard clinical and microbiological criteria, to determine whether blood culture isolates represented true bacteraemias or contamination. Catheter-collected cultures had a specificity of 85% compared with 97% for peripheral cultures. In only two instances (0.2%) was the diagnosis of clinically significant bacteraemia made on the basis of catheter culture alone. This study concluded that catheter-collected samples are not a good test for true bacteraemia, and that peripheral. cultures are more reliable when the results of the paired cultures are discordant. (c) 2004 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Characteristics obtained from peripheral pulses can be used to assess the status of cardiovascular system of subjects. However, nonintrusive techniques are preferred when prolonged monitoring is required for their comfort. Pulse transit time ( PTT) measurement has showed its potentials to monitor timing changes in peripheral pulse in cardiovascular and respiratory studies. In children, the common peripheries used for these studies are fingers or toes. Presently, there is no known study conducted on children to investigate the possible physiologic parameters that can confound PTT measure at these sites. In this study, PTT values from both peripheral sites were recorded from 55 healthy Caucasian children ( 39 male) with mean age of 8.4 +/- 2.3 years ( range 5 - 12 years). Peripheries' path length, heart rate, systolic blood pressure, diastolic blood pressure ( DBP) and mean arterial pressure ( MAP) were measured to investigate their contributions to PTT measurement. The results reveal that PTT is significantly related to all parameters ( P< 0.05), except for DBP and MAP. Age is observed to be the dominant factor that affects PTT at both peripheries in a child. Regression equations for PTT were derived for measuring from a finger and toe, ( 6.09 age + 189.2) ms and ( 6.70 age + 243.0) ms, respectively.
Resumo:
In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.