845 resultados para PARVALBUMIN-POSITIVE NEURONS
Resumo:
The rational for this review is to provide a coherent formulation of the cognitive neurochemistry of nicotine, with the aim of suggesting research and clinical applications. The first part is a comprehensive review of the empirical studies of the enhancing effects of nicotine on information processing, especially those on attentional and mnemonic processing. Then, these studies are put in the context of recent studies on the neurochemistry of nicotine and cholinergic drugs, in general. They suggest a positive effect of nicotine on processes acting on encoded material during the post acquisition phase, the process of consolidation. Thus, the involvement of nicotinic receptors in mnemonic processing is modulation of the excitability of neurons in the hippocampal formation to enable associative processing.
Resumo:
Objective. This study investigated whether trait positive schizotypy or trait dissociation was associated with increased levels of data-driven processing and symptoms of post-traumatic distress following a road traffic accident. Methods. Forty-five survivors of road traffic accidents were recruited from a London Accident and Emergency service. Each completed measures of trait positive schizotypy, trait dissociation, data-driven processing, and post-traumatic stress. Results. Trait positive schizotypy was associated with increased levels of data-driven processing and post-traumatic symptoms during a road traffic accident, whereas trait dissociation was not. Conclusions. Previous results which report a significant relationship between trait dissociation and post-traumatic symptoms may be an artefact of the relationship between trait positive schizotypy and trait dissociation.
Resumo:
The measures most frequently used to assess psychotic symptoms fail to reflect important dimensions. The Psychotic Symptom Rating Scale (PSYRATS) aims to capture the multidimensional nature of auditory hallucinations and delusions. Individuals (N = 276) who had recently relapsed with positive symptoms completed the auditory hallucinations and delusions PSYRATS scales. These scores were compared with the relevant items from the SAPS and PANSS, and with measures of current mood. Total scores and distribution of items of the PSYRATS scales are presented and correlated with other measures. Positive symptom items from the SAPS and PANSS reflected the more objective aspects of PSYRATS ratings of auditory hallucinations and delusions (frequency and conviction) but were relatively poor at measuring distress. A major strength of the PSYRATS scales is the specific measurement of the distress dimension of symptoms, which is a key target of psychological intervention. It is advised that the PSYRATS should not be used as a total score alone, whilst further research is needed to clarify the best use of potential subscales. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
In this review we evaluate the cognitive and neural effects of positive and negative mood on executive function. Mild manipulations of negative mood appear to have little effect on cognitive control processes, whereas positive mood impairs aspects of updating, planning and switching. These cognitive effects may be linked to neurochemistry: with positive mood effects mediated by dopamine while negative mood effects may be mediated by serotonin levels. Current evidence on the effects of mood on regional brain activity during executive functions, indicates that the prefrontal cortex is a recurrent site of integration between mood and cognition. We conclude that there is a disparity between the importance of this topic and awareness of how mood affects, executive functions in the brain. Most behavioural and neuroimaging studies of executive function in normal samples do not explore the potential role of variations in mood, yet the evidence we outline indicates that even mild fluctuations in mood can have a significant influence on neural activation and cognition. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The current study extends previous investigation of schizotypy as a vulnerability factor for trauma-related intrusions through the use of a clinical sample. Fifty people seeking psychological interventions after experiencing a distressing or traumatic event completed measures of positive schizotypy, posttraumatic stress disorder symptomatology, peritraumatic dissociation, and mood. Individuals scoring high in positive schizotypy were vulnerable to experiencing more frequent trauma-related intrusions along with wider posttraumatic stress disorder symptomatology, including hypervigilance, avoidance, and low mood. Results are discussed within a theoretical context, suggesting that certain information processing styles associated with high schizotype individuals may account for a vulnerability to trauma-related intrusions.
Resumo:
Although the relationship between "mere exposure" and attitude enhancement is well established in the adult domain, there has been little similar work with children. This article examines whether toddlers' visual attention toward pictures of foods can be enhanced by repeated visual exposure to pictures of foods in a parent-administered picture book. We describe three studies that explored the number and nature of exposures required to elicit positive visual preferences for stimuli and the extent to which induced preferences generalize to other similar items. Results show that positive preferences for stimuli are easily and reliably induced in children and, importantly, that this effect of exposure is not restricted to the exposed stimulus per se but also applies to new representations of the exposed item. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A novel Swarm Intelligence method for best-fit search, Stochastic Diffusion Search, is presented capable of rapid location of the optimal solution in the search space. Population based search mechanisms employed by Swarm Intelligence methods can suffer lack of convergence resulting in ill defined stopping criteria and loss of the best solution. Conversely, as a result of its resource allocation mechanism, the solutions SDS discovers enjoy excellent stability.
Resumo:
An information processing paradigm in the brain is proposed, instantiated in an artificial neural network using biologically motivated temporal encoding. The network will locate within the external world stimulus, the target memory, defined by a specific pattern of micro-features. The proposed network is robust and efficient. Akin in operation to the swarm intelligence paradigm, stochastic diffusion search, it will find the best-fit to the memory with linear time complexity. information multiplexing enables neurons to process knowledge as 'tokens' rather than 'types'. The network illustrates possible emergence of cognitive processing from low level interactions such as memory retrieval based on partial matching. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.
Resumo:
We are developing computational tools supporting the detailed analysis of the dependence of neural electrophysiological response on dendritic morphology. We approach this problem by combining simulations of faithful models of neurons (experimental real life morphological data with known models of channel kinetics) with algorithmic extraction of morphological and physiological parameters and statistical analysis. In this paper, we present the novel method for an automatic recognition of spike trains in voltage traces, which eliminates the need for human intervention. This enables classification of waveforms with consistent criteria across all the analyzed traces and so it amounts to reduction of the noise in the data. This method allows for an automatic extraction of relevant physiological parameters necessary for further statistical analysis. In order to illustrate the usefulness of this procedure to analyze voltage traces, we characterized the influence of the somatic current injection level on several electrophysiological parameters in a set of modeled neurons. This application suggests that such an algorithmic processing of physiological data extracts parameters in a suitable form for further investigation of structure-activity relationship in single neurons.