956 resultados para Ovine Fetus
Resumo:
Fluoxetine (FLX) is commonly used to treat anxiety and depressive disorders in pregnant women. Since FLX crosses the placenta and is excreted in milk, maternal treatment with this antidepressant may expose the fetus and neonate to increased levels of serotonin (5-HT). Long-term behavioral abnormalities have been reported in rodents exposed to higher levels of 5-HT during neurodevelopment. In this study we evaluated if maternal exposure to FLX during pregnancy and lactation would result in behavioral and/or stress response disruption in adolescent and adult rats. Our results indicate that exposure to FLX influenced restraint stress-induced Fos expression in the amygdala in a gender and age-specific manner. In male animals, a decreased expression was observed in the basolateral amygdala at adolescence and adulthood; whereas at adulthood, a decrease was also observed in the medial amygdala. A lack of FLX exposure effect was observed in females and also in the paraventricular nucleus of both genders. Regarding the behavioral evaluation, FLX exposure did not induce anhedonia in the sucrose preference test but decreased the latency to feed of both male and female adolescent rats evaluated in the novelty-suppressed feeding test. In conclusion, FLX exposure during pregnancy and lactation decreases acute amygdalar stress response to a psychological stressor in males (adolescents and adults) as well as influences the behavior of adolescents (males and females) in a model that evaluates anxiety and/or depressive-like behavior. Even though FLX seems to be a developmental neurotoxicant, the translation of these findings to human safe assessment remains to be determined since it is recognized that not treating a pregnant or lactating woman may also impact negatively the development of the descendants.
Resumo:
The umbilical cord is a structure that provides vascular flow between the fetus and the placenta. It contains two arteries and one vein, which are surrounded and supported by gelatinous tissue known as Wharton’s jelly. There are many umbilical cord abnormalities that are related to the prognosis of fetus survival and birth weight. The authors report a case of umbilical cord constriction due to the localized absence of Wharton’s jelly, which was undiagnosed antenatally and had a fatal outcome. A review of the association between the absence of Wharton’s jelly and an unfavorable pregnancy outcome was undertaken.
Resumo:
Malaria is a widespread infectious disease caused by the parasite Plasmodium. During pregnancy, malaria infection leads to a range of complications that can affect both the mother and fetus, including stillbirth, infant mortality, and low birth weight. In this study, we utilized a mouse model of placental malaria (PM) infection to determine the importance of the protein MyD88 in the host immune response to Plasmodium during pregnancy. Initially, we demonstrated that Plasmodium berghei NK65GFP adhered to placental tissue via chondroitin sulfate A and induced PM in mice with a C57BL/6 genetic background. To evaluate the involvement of MyD88 in the pathology of PM, we performed a histopathological analysis of placentas obtained from MyD88(-/-) and wild-type (WT) mice following infection on the 19th gestational day. Our data demonstrated that the detrimental placental alterations observed in the infected mice were correlated with the expression of MyD88. Moreover, in the absence of this protein, production of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) was significantly reduced in the infected mice. More importantly, in contrast to fetuses from infected WT mice, which exhibited a reduction in body weight, the fetuses from infected MyD88(-/-) mice did not display significant weight loss compared to their noninfected littermates. In addition, we observed a decrement of maternal care associated with malaria infection, which was attenuated in the MyD88-deficient mice. Collectively, the results of this study illustrate the pivotal importance of the MyD88 signaling pathway in the pathogenesis of placental malaria, thus presenting new possibilities for targeting MyD88 in therapeutic interventions.
Resumo:
The present study was aimed at investigating the effect of experimental infection by Trypanosoma vivax in different stages of pregnancy, determining the pathogenesis of reproductive failure, and confirming transplacental transmission. We used 12 pregnant ewes distributed into four experimental groups: G1, was formed by three ewes infected with T. vivax in the first third of pregnancy (30 days); G2 comprised three infected ewes in the final third of pregnancy (100 days); G3 and G4 were composed of three non-infected ewes with the same gestational period, respectively. Each ewe of G1 and G2 was inoculated with 1.25 × 105 tripomastigotes. Clinical examination, determination of parasitemia, serum biochemistry (albumin, total protein, glucose, cholesterol, and urea), packed cell volume (PCV), serum progesterone, and pathological examination were performed. Placenta, amniotic fluid, blood and tissues from the fetuses and stillbirths were submitted to PCR. Two ewes of G1 (Ewe 1 and 3) presented severe infection and died in the 34th and 35th days post-infection (dpi), respectively; but both fetuses were recovered during necropsy. In G2, Ewe 5 aborted two fetuses on the 130th day (30 dpi) of pregnancy; and Ewe 6 aborted one fetus in the 140th day (40 dpi) of gestation. Ewes 2 and 4 delivered two weak lambs that died five days after birth. Factors possibly involved with the reproductive failure included high parasitemia, fever, low PCV, body score, serum glucose, total protein, cholesterol, and progesterone. Hepatitis, pericarditis, and encephalitis were observed in the aborted fetuses. The presence of T. vivax DNA in the placenta, amniotic fluid, blood, and tissues from the fetuses confirms the transplacental transmission of the parasite. Histological lesion in the fetuses and placenta also suggest the involvement of the parasite in the etiopathogenesis of reproductive failure in ewes.
Resumo:
A Chlamydophila abortus, anteriormente conhecida como Chlamydia psittaci sovovar 1, é uma bactéria Gram negativa, intracelular obrigatória. Esse micro-organismo é frequentemente encontrado em distúrbios reprodutivos em ovinos, bovinos e caprinos, sendo o aborto epizoótico dos bovinos e o aborto enzoótico dos ovinos e caprinos as manifestações mais importantes. Considerando-se o pouco material literário a respeito da clamidofilose no Brasil, a pesquisa teve como objetivo determinar a presença de anticorpos fixadores de complemento anti-Chlamydophila abortus, correlacionando os resultados obtidos com achados no exame clínico e histórico dos animais, além de alterações nos índices zootécnicos, em especial na esfera reprodutiva, tais como alto índice de repetição de cio, número elevado de abortamentos, elevado número de natimortos, entre outros. Foram testadas para prova de fixação do complemento 220 amostras de soro de ovinos, de 26 propriedades, distribuídas em 19 municípios, com relato de manifestação reprodutiva, obtendo-se 19,55% (43/220) de testes positivos para Chlamydophila abortus, com ocorrência de foco constatada de 61,53%. No geral, a titulação de anticorpos encontrada foi baixa, com título não superior a 64. A frequência de manifestação reprodutiva mais observada foi o aborto, representando 65,12% (28/43) do número total de animais soropositivos, seguido de repetição de cio juntamente com nascimento de cordeiro fraco, com frequência de 6,98% (3/ 43) e, por fim, morte neonatal com 4,65% (2/43), sendo que não houve associação significativa entre animais que foram positivos ao teste e a esses fatores.
Resumo:
Measurements on the growth process and placental development of the embryo and fetuses of Cavia porcellus were carried out using ultrasonography. Embryo, fetus, and placenta were monitored from Day 15 after mating day to the end of gestation. Based on linear and quadratic regressions, the following morphometric analysis showed a good indicator of the gestational age: placental diameter, biparietal diameter, renal length, and crown rump. The embryonic cardiac beat was first detected at an average of 22.5 days. The placental diameter showed constant increase from beginning of gestation then remained to term and presented a quadratic correlation with gestational age (r2 = 0.89). Mean placental diameter at the end of pregnancy was 3.5 ± 0.23 cm. By Day 30, it was possible to measure biparietal diameter, which followed a linear pattern of increase up to the end of gestation (r2 = 0.95). Mean biparietal diameter in the end of pregnancy was 1.94 ± 0.03 cm. Kidneys were firstly observed on Day 35 as hyperechoic structures without the distinction of medullar and cortical layers, thus the regression model equation between kidney length and gestational age presents a quadratic relationship (r2 = 0.7). The crown rump presented a simple linear growth, starting from 15 days of gestation, displaying a high correlation with the gestational age (r2 = 0.9). The offspring were born after an average gestation of 61.3 days. In this study, we conclude that biparietal diameter, placental diameter, and crown rump are adequate predictive parameters of gestational age in guinea pigs because they present high correlation index.
Resumo:
The Poxviruses are a family of double stranded DNA (dsDNA) viruses that cause disease in many species, both vertebrate and invertebrate. Their genomes range in size from 135 to 365 kbp and show conservation in both organization and content. In particular, the central genomic regions of the chordopoxvirus subfamily (those capable of infecting vertebrates) contain 88 genes which are present in all the virus species characterised to date and which mostly occur in the same order and orientation. In contrast, however, the terminal regions of the genomes frequently contain genes that are species or genera-specific and that are not essential for the growth of the virus in vitro but instead often encode factors with important roles in vivo including modulation of the host immune response to infection and determination of the host range of the virus. The Parapoxviruses (PPV), of which Orf virus is the prototypic species, represent a genus within the chordopoxvirus subfamily of Poxviridae and are characterised by their ability to infect ruminants and humans. The genus currently contains four recognised species of virus, bovine papular stomatitis virus (BPSV) and pseudocowpox virus (PCPV) both of which infect cattle, orf virus (OV) that infects sheep and goats, and parapoxvirus of red deer in New Zealand (PVNZ). The ORFV genome has been fully sequenced, as has that of BPSV, and is ~138 kb in length encoding ~132 genes. The vast majority of these genes allow the virus to replicate in the cytoplasm of the infected host cell and therefore encode proteins involved in replication, transcription and metabolism of nucleic acids. These genes are well conserved between all known genera of poxviruses. There is however another class of genes, located at either end of the linear dsDNA genome, that encode proteins which are non-essential for replication and generally dictate host range and virulence of the virus. The non-essential genes are often the most variable within and between species of virus and therefore are potentially useful for diagnostic purposes. Given their role in subverting the host-immune response to infection they are also targets for novel therapeutics. The function of only a relatively small number of these proteins has been elucidated and there are several genes whose function still remains obscure principally because there is little similarity between them and proteins of known function in current sequence databases. It is thought that by selectively removing some of the virulence genes, or at least neutralising the proteins in some way, current vaccines could be improved. The evolution of poxviruses has been proposed to be an adaptive process involving frequent events of gene gain and loss, such that the virus co-evolves with its specific host. Gene capture or horizontal gene transfer from the host to the virus is considered an important source of new viral genes including those likely to be involved in host range and those enabling the virus to interfere with the host immune response to infection. Given the low rate of nucleotide substitution, recombination can be seen as an essential evolutionary driving force although it is likely underestimated. Recombination in poxviruses is intimately linked to DNA replication with both viral and cellular proteins participate in this recombination-dependent replication. It has been shown, in other poxvirus genera, that recombination between isolates and perhaps even between species does occur, thereby providing another mechanism for the acquisition of new genes and for the rapid evolution of viruses. Such events may result in viruses that have a selective advantage over others, for example in re-infections (a characteristic of the PPV), or in viruses that are able to jump the species barrier and infect new hosts. Sequence data related to viral strains isolated from goats suggest that possible recombination events may have occurred between OV and PCPV (Ueda et al. 2003). The recombination events are frequent during poxvirus replication and comparative genomic analysis of several poxvirus species has revealed that recombinations occur frequently on the right terminal region. Intraspecific recombination can occur between strains of the same PPV species, but also interspecific recombination can happen depending on enough sequence similarity to enable recombination between distinct PPV species. The most important pre-requisite for a successful recombination is the coinfection of the individual host by different virus strains or species. Consequently, the following factors affecting the distribution of different viruses to shared target cells need to be considered: dose of inoculated virus, time interval between inoculation of the first and the second virus, distance between the marker mutations, genetic homology. At present there are no available data on the replication dynamics of PPV in permissive and non permissive hosts and reguarding co-infetions there are no information on the interference mechanisms occurring during the simultaneous replication of viruses of different species. This work has been carried out to set up permissive substrates allowing the replication of different PPV species, in particular keratinocytes monolayers and organotypic skin cultures. Furthermore a method to isolate and expand ovine skin stem cells was has been set up to indeep further aspects of viral cellular tropism during natural infection. The study produced important data to elucidate the replication dynamics of OV and PCPV virus in vitro as well as the mechanisms of interference that can arise during co-infection with different viral species. Moreover, the analysis carried on the genomic right terminal region of PCPV 1303/05 contributed to a better knowledge of the viral genes involved in host interaction and pathogenesis as well as to locate recombination breakpoints and genetic homologies between PPV species. Taken together these data filled several crucial gaps for the study of interspecific recombinations of PPVs which are thought to be important for a better understanding of the viral evolution and to improve the biosafety of antiviral therapy and PPV-based vectors.
Resumo:
The main work involved the PMWS (Post-weaning multisystemic Wasting Syndrome), caused by PCV-2 (Porcine Circovirus type 2) that involved post-weaned pigs. Merial Italy has funded a study activity in which groups of 3-5 animals were sampled for lungs, tracheo-bronchial and superficial inguinal lymph nodes, ileum and tonsils. The protocol applied can be identified as a more diagnostic potential on the individual than on the group. PNP. Another investigation has been conducted to study proliferative and necrotizing pneumonia (PNP), a form of interstitial pneumonia in weaning and post-weaning pigs characterized by hypertrophy and hyperplasia of type II pneumocytes, coagulative necrosis and granular debris within alveolar spaces. Many studies suggest porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as the main causes of the disease, but Aujeszky disease virus (ADV) and swine influenza virus (SIV) are also considered. An immunohistochemical study was carried out to evaluate the role of these viruses in PNP lesions in Italy. PNP results primarily associated with PRRSV, even if co-infection is characterized by more severe histological features. Reproductive pathology. A major risk factor for PCV2 infection is a viraemic episode taking place in pregnant sows with low antibody titer which is transmitted by specific PCV2 products of conception. PCV2 can infect the fetus even by vehicles through infected semen or ova, or as a result of infection of the genital tract. An investigation was carried out to identify the presence and localization of PCV2 in the genital tracts of sows experimentally infected with PCV2 and in their fetuses. The results obtained suggest that: conventional sows can be infected by intrauterine exposition; low antibody titres increase the probability of infection; PCV2 infection close to insemination time reduces the pregnancy rate; placental lesions may represent an additional cause of fetal suffering.
Resumo:
Transmissible spongiform encephalopathies (TSE) are neurodegenerative diseases caused by the conversion of the host-encoded cellular protein (PrPC) to a disease-associated isoform (PrPSc). The agent responsible for prion diseases may exist as different strains with specific biological and biochemical properties. According to the protein-only hypothesis, prion strain diversity is enciphered in PrPSc conformation. Molecular strain typing methods are based on the electrophoretic mobility of protease resistant core of PrPSc, on the susceptibility to protease digestion, on the glycosylation profile of PrPres and on the conformational stability of PrPSc. In this study a new conformational stability assay was developed based on the differential solubility of PrPC and PrPSc: CSSA (conformational stability and solubility assay). The conformational stability assay was performed by measuring PrPSc solubility in homogenates treated with increasing concentrations of GdnHCl, in the absence of proteinase K. Indeed, dose-response curves allowed estimation of the concentration of GdnHCl able to solubilise 50% of PrPSc. The results showed that this method is valuable for the biochemical typing of strains in bank voles and it is also a promising tool for molecular analysis of natural prion isolates. CSSA also revealed strain-specific PrPSc conformational stabilities of ovine natural isolates so that this feature, combined with the N-terminal PrPSc cleavage, allowed differentiation of classical scrapie, including CH1641-like, from natural goat BSE and experimental sheep BSE. In view of the implications concerning strain similarity between animal and human TSEs, the physico-chemical properties of the Nor98 with two human prion diseases (VPSPr and GSS) were compared in order to investigate the extent of the similarity between animal and human prion strains. The results showed an unexpected heterogeneity of the molecular features among human and sheep TSEs associated with internal PrPres fragments with the possible exception of Nor98 and a case of GSS P102L. These similarities and differences need further investigation by N- and C-terminal sequencing and biological characterization.
Resumo:
OBIETTIVI: Valutazione del rischio di trasmissione verticale e delle conseguenze dell’infezione congenita da cytomegalovirus (CMV) in caso di infezione non primaria versus l’outcome delle gravidanze complicate da infezione primaria. MATERIALI E METODI: Studio retrospettivo di coorte di gravide con infezione recente da CMV diagnosticata c/o il nostro centro negli anni 2000-2013. Le pazienti sono state suddivise in 2 gruppi in base al risultato delle indagini sierologiche (avidità IgG e immunoblot): il primo con profilo sierologico compatibile con infezione non primaria e l'altro compatibile con infezione primaria da CMV. Sono stati confrontati il rischio di trasmissione e di infezione congenita sintomatica nei due gruppi. RISULTATI: Il follow-up è risultato disponibile in 1122 casi di cui 182 con infezione materna non-primaria e 940 con infezione primaria materna. L’infezione congenita è stata diagnosticata in 7 (3.86%) feti/neonati nei casi di infezione non primaria e in 217 (23%) feti/neonati nei casi di infezione primaria (p<0.001). Tra gli infetti, erano sintomatici 43 (19,8%) e 3 (42,8%) rispettivamente nell’infezione primaria e non primaria. COMMENTO: La preesistente immunità materna offre una protezione contro la trasmissione intrauterina nell’infezione da CMV ma non protegge dalla malattia congenita sintomatica.
Resumo:
ABSTRACT : INTRODUCTION : V2-receptor (V2R) stimulation potentially aggravates sepsis-induced vasodilation, fluid accumulation and microvascular thrombosis. Therefore, the present study was performed to determine the effects of a first-line therapy with the selective V2R-antagonist (Propionyl1-D-Tyr(Et)2-Val4-Abu6-Arg8,9)-Vasopressin on cardiopulmonary hemodynamics and organ function vs. the mixed V1aR/V2R-agonist arginine vasopressin (AVP) or placebo in an established ovine model of septic shock. METHODS : After the onset of septic shock, chronically instrumented sheep were randomly assigned to receive first-line treatment with the selective V2R-antagonist (1 g/kg per hour), AVP (0.05 g/kg per hour), or normal saline (placebo, each n = 7). In all groups, open-label norepinephrine was additionally titrated up to 1 g/kg per minute to maintain mean arterial pressure at 70 ± 5 mmHg, if necessary. RESULTS : Compared to AVP- and placebo-treated animals, the selective V2R-antagonist stabilized cardiopulmonary hemodynamics (mean arterial and pulmonary artery pressure, cardiac index) as effectively and increased intravascular volume as suggested by higher cardiac filling pressures. Furthermore, left ventricular stroke work index was higher in the V2R-antagonist group than in the AVP group. Notably, metabolic (pH, base excess, lactate concentrations), liver (transaminases, bilirubin) and renal (creatinine and blood urea nitrogen plasma levels, urinary output, creatinine clearance) dysfunctions were attenuated by the V2R-antagonist when compared with AVP and placebo. The onset of septic shock was associated with an increase in AVP plasma levels as compared to baseline in all groups. Whereas AVP plasma levels remained constant in the placebo group, infusion of AVP increased AVP plasma levels up to 149 ± 21 pg/mL. Notably, treatment with the selective V2R-antagonist led to a significant decrease of AVP plasma levels as compared to shock time (P < 0.001) and to both other groups (P < 0.05 vs. placebo; P < 0.001 vs. AVP). Immunohistochemical analyses of lung tissue revealed higher hemeoxygenase-1 (vs. placebo) and lower 3-nitrotyrosine concentrations (vs. AVP) in the V2R-antagonist group. In addition, the selective V2R-antagonist slightly prolonged survival (14 ± 1 hour) when compared to AVP (11 ± 1 hour, P = 0.007) and placebo (11 ± 1 hour, P = 0.025). CONCLUSIONS : Selective V2R-antagonism may represent an innovative therapeutic approach to attenuate multiple organ dysfunction in early septic shock.
Resumo:
Despite evidence for the important role of oestrogens in the aetiology and pathophysiology of chronic immune/inflammatory diseases, the previous view of an unequivocal beneficial effect of oestrogens on RA compared with a detrimental effect on SLE has to be reconsidered. Likewise, the long-held belief that RA remits in the majority of pregnant patients has been challenged, and shows that only half of the patients experience significant improvement when objective disease activity measurements are applied. Pregnancies in patients with SLE are mostly successful when well planned and monitored interdisciplinarily, whereas a small proportion of women with APS still have adverse pregnancy outcomes in spite of the standard treatment. New prospective studies indicate better outcomes for pregnancies in women with rare diseases such as SSc and vasculitis. Fertility problems are not uncommon in patients with rheumatic disease and need to be considered in both genders. Necessary therapy, shortly before or during the pregnancy, demands taking into account the health of both mother and fetus. Long-term effects of drugs on offspring exposed in utero or during lactation is a new area under study as well as late effects of maternal rheumatic disease on children.
Resumo:
TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications.
Resumo:
The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.
Resumo:
Until today the role of oxygen in the development of the fetus remains controversially discussed. It is still believed that lack of oxygen in utero might be responsible for some of the known congenital cardiovascular malformations. Over the last two decades detailed research has given us new insights and a better understanding of embryogenesis and fetal growth. But most importantly it has repeatedly demonstrated that oxygen only plays a minor role in the early intrauterine development. After organogenesis has taken place hypoxia becomes more important during the second and third trimester of pregnancy when fetal growth occurs. This review will briefly adress causes and mechanisms leading to intrauterine hypoxia and their impact on the fetal cardiovascular system.