922 resultados para Oryza sativa
Resumo:
Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.
Resumo:
The soil-plant transfer factors for Cs and Sr were analyzed in relationship to soil properties, crops, and varieties of crops. Two crops and two varieties of each crop: lettuce (Lactuca sativa L.), cv. Salad Bowl Green and cv. Lobjoits Green Cos, and radish (Raphanus sativus L.), cv. French Breakfast 3 and cv. Scarlet Globe, were grown on five different soils amended with Cs and Sr to give concentrations of 1 mg kg(-1) and 50 mg kg(-1) of each element. Soil-plant transfer coefficients ranged between 0.12-19.10 (Cs) and 1.48-146.10 (Sr) for lettuce and 0.09-13.24 (Cs) and 2.99-93.00 (Sr) for radish. Uptake of Cs and Sr by plants depended on both plant and soil properties. There were significant (P less than or equal to 0.05) differences between soil-plant transfer factors for each plant type at the two soil concentrations. At each soil concentration about 60% of the variance in the uptake of the Cs and Sr was due to soil properties. For a given concentration of Cs or Sr in soil, the most important factor effecting soil-plant transfer of these elements was the soil properties rather than the crops or varieties of crops. Therefore, for the varieties considered here, soil-plant transfer of Cs and Sr would be best regulated through the management of soil properties. At each concentration of Cs and Sr, the main soil properties effecting the uptake of Cs and Sr by lettuce and radish were the concentrations of K and Ca, pH and CEC. Together with the concentrations of contaminants in soils, they explained about 80% of total data variance, and were the best predictors for soil-plant transfer. The different varieties of lettuce and radish gave different responses in soil-plant transfer of Cs and Sr in different soil conditions, i.e. genotype x environment interaction caused about 30% of the variability in the uptake of Cs and Sr by plants. This means that a plant variety with a low soil-plant transfer of Cs and Sr in one soil could have an increased soil-plant transfer factor in other soils. The broad implications of this work are that in contaminated agricultural lands still used for plant growing, contaminant-excluding crop varieties may not be a reliable method for decreasing contaminant transfer to foodstuffs. Modification of soil properties would be a more reliable technique. This is particularly relevant to agricultural soils in the former USSR still affected by fallout from the Chernobyl disaster.
Resumo:
Soil contamination by arsenic (As) presents a hazard in many countries and there is a need for techniques to minimize As uptake by plants. A proposed in situ remediation method was tested by growing lettuce (Lactuca sativa L. cv. Kermit) in a greenhouse pot experiment on soil that contained 577 mg As kg(-1), taken from a former As smelter site. All combinations of iron (Fe) oxides, at concentrations of 0.00, 0.22, 0.54, and 1.09% (w/w), and lime, at concentrations of 0.00, 0.27, 0.68, and 1.36% (w/w), were tested in a factorial design. To create the treatments, field-moist soil, commercial-grade FeSO4, and ground agricultural lime were mixed and stored for one week, allowing Fe oxides to precipitate. Iron oxides gave highly significant (P < 0.001) reductions in lettuce As concentrations, down to 11% of the lettuce As concentration for untreated soil. For the Fe oxides and lime treatment combinations where soil pH was maintained nearly constant, the lettuce As concentration declined in an exponential relationship with increasing FeSO4 application rate and lettuce yield was almost unchanged. Iron oxides applied at a concentration of 1.09% did not give significantly lower lettuce As concentrations than the 0.54% treatment. Simultaneous addition of lime with FeSO4 was essential. Ferrous sulfate with insufficient lime lowered soil pH and caused mobilization of Al, Ba, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr, and Zn. At the highest Fe oxide to lime ratios, Mn toxicity caused severe yield loss.
Resumo:
Rationale The hyperphagic effect of ∆9-tetrahydrocannabinol (∆9THC) in humans and rodents is well known. However, no studies have investigated the importance of ∆9THC composition and any influence other non-∆9THC cannabinoids present in Cannabis sativa may have. We therefore compared the effects of purified ∆9THC, synthetic ∆9THC (dronabinol), and ∆9THC botanical drug substance (∆9THC-BDS), a ∆9THC-rich standardized extract comparable in composition to recreationally used cannabis. Methods Adult male rats were orally dosed with purified ∆9THC, synthetic ∆9THC, or ∆9THC-BDS, matched for ∆9THC content (0.34–2.68 mg/kg). Prior to dosing, subjects were satiated, and food intake was recorded following ∆9THC administration. Data were then analyzed in terms of hourly intake and meal patterns. Results All three ∆9THC substances tested induced significant hyperphagic effects at doses ≥0.67 mg/kg. These effects included increased intake during hour one, a shorter latency to onset of feeding and a greater duration and consumption in the first meal. However, while some differences in vehicle control intakes were observed, there were significant, albeit subtle, differences in pattern of effects between the purified ∆9THC and ∆9THC-BDS. Conclusion All ∆9THC compounds displayed classical ∆9THC effects on feeding, significantly increasing short-term intake whilst decreasing latency to the first meal. We propose that the subtle adjustment to the meal patterns seen between the purified ∆9THC and ∆9THC-BDS are due to non-∆9THC cannabinoids present in ∆9THC-BDS. These compounds and other non-cannabinoids have an emerging and diverse pharmacology and can modulate ∆9THC-induced hyperphagia, making them worth further investigation for their therapeutic potential.
Resumo:
Two commercial enzyme products, Depol 40 (D) and Liquicell 2500 (L), were characterised from a biochemical standpoint and their potential to improve rumen degradation of forages was evaluated in vitro. Enzyme activities were determined at pH 5.5 and 39 degreesC. Analysis of the enzyme activities indicated that L contained higher xylanase and endoglucanase, but lower exoglucanase, pectinase and alpha-amylase activities than D. The Reading Pressure Technique (RPT) was used to investigate the effect of enzyme addition on the in vitro gas production (GP) and organic matter degradation (OMD) of alfalfa (Medicago sativa L.) stems and leaves. A completely randomised design with factorial arrangement of treatments was used. Both alfalfa fractions were untreated or treated with each enzyme at four levels, 20 h before incubation with rumen fluid. Each level of enzyme provided similar amounts of filter paper (D1, L1), endoglucanase (D2, L2), alpha-L-arabinofuranosidase (D3, L3) and xylanase units (D4, L4) per gram forage DM. Enzymes increased the initial OMD in both fractions, with improvements of up to 15% in leaves (D4) and 8% in stems (L2) after 12 h incubation. All enzyme treatments increased the extent of degradation (96 h incubation) in the leaf fractions, but only L2 increased final OMD in the stems. Direct hydrolysis of forage fractions during the pre-treatment period did not fully account for the magnitude of the increases in OMD, suggesting that the increase in rate of degradation was achieved through a combined effect of direct enzyme hydrolysis and synergistic action between the exogenous (applied) and endogenous (rumen) enzymes. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background and Aims The negative logarithmic relationship between orthodox seed longevity and moisture content in hermetic storage is subject to a low-moisture-content limit (m(c)), but is m(c) affected by temperature? Methods Red clover (Trifolium pratense) and alfalfa (Medicago sativa) seeds were stored hermetically at 12 moisture contents (2-15 %) and five temperatures (-20, 30, 40, 50 and 65 degrees C) for up to 14.5 years, and loss in viability was estimated. Key Results Viability did not change during 14.5 years hermetic storage at -20 degrees C with moisture contents from 2.2 to 14.9 % for red clover, or 2.0 to 12.0 % for alfalfa. Negative logarithmic relationships between longevity and moisture contents > m(c) were detected at 30-65 degrees C, with discontinuities at low moisture contents; m(c) varied between 4.0 and 5.4 % (red clover) or 4.2 and 5.5 % (alfalfa), depending upon storage temperature. Within the ranges investigated, a reduction in moisture content below m(c) at any one temperature had no effect on longevity. Estimates of m(c) were greater the cooler the temperature, the relationship (P < 0.01) being curvilinear. Above m(c), the estimates of C-H and C-Q (i.e. the temperature term of the seed viability equation) did not differ (P > 0.10) between species, whereas those of K-E and C-W did (P < 0.001). Conclusions The low-moisture-content limit to negative logarithmic relationships between seed longevity and moisture content in hermetic storage increased the cooler the storage temperature, by approx. 1.5 % over 35 degrees C (4.0-4.2 % at 65 degrees C to 5.4-5.5 % at 30-40 degrees C) in these species. Further reduction in moisture content was not damaging. The variation in m(c) implies greater sensitivity of longevity to temperature above, compared with below, m(c). This was confirmed (P < 0.005).
Resumo:
The Euro-Mediterranean region is an important centre for the diversity of crop wild relatives. Crops, such as oats (Avena sativa), sugar beet (Beta vulgaris), apple (Malus domestica), annual meadow grass (Festuca pratensis), white clover (Trifolium repens), arnica (Arnica montana), asparagus (Asparagus officinalis), lettuce (Lactuca sativa), and sage (Salvia officinalis) etc., all have wild relatives in the region. The European Community funded project, PGR Forum (www.pgrforum.org) is building an online information system to provide access to crop wild relative data to a broad user community; including plant breeders, protected area managers, policy-makers, conservationists, taxonomists and the wider public. The system will include data on uses, geographical distribution, biology, population and habitat information, threats (including IUCN Red List assessments) and conservation actions. This information is vital for the continued sustainable utilisation and conservation of crop wild relatives. Two major databases have been utilised as the backbone to a Euro-Mediterranean crop wild relative catalogue, which forms the core of the information system: Euro+Med PlantBase (www.euromed.org.uk) and Mansfeld’s World Database of Agricultural and Horticultural Crops (http://mansfeld.ipk-gatersleben.de). By matching the genera found within the two databases, a preliminary list of crop wild relatives has been produced. Around 20,000 of the 30,000+ species listed in Euro+Med PlantBase can be considered crop wild relatives, i.e. those species found within the same genus as a crop. The list is currently being refined by implementing a priority ranking system based on the degree of relatedness of taxa to the associated crop.
Resumo:
The grass species Miscanthus sinensis, Echinochloa crus-galli and Phalaris arundinacea may be useful biomass crops. In glasshouse inoculations with two isolates of Barley yellow dwarf virus (BYDV)-MAV and BYDV-PAV and one of Cereal yellow dwarf virus (CYVD)-RPV , E. crus galli was infected by all three virus isolates, P. arundinacea by BYDV-MAV and CYDV-RPV, but M. sinensis only by BYDV-MAV. All three hosts became very difficult to infect after several weeks’ growth. Symptoms were inconspicuous; dry matter yield losses ranged from c. 20–40%. Aphids acquired all three virus isolates from E. crus-galli, but more efficiently from 5 than 26-week-old plants. Only BYDV-MAV was acquired from P. arundinacea and M. sinensis. Plants of each species and of Avena sativa were grown outdoors between May and July in 1994 and 1995. Young plants of each species were exposed for successive 2-week intervals during the same periods. Vector populations were higher on A. sativa and P. arundinacea than on E. crus-galli and M. sinensis, and more plants of these species became infected. In 1994 only BYDV-MAV was detected. In 1995 BYDV-MAV, BYDV-PAV and CYDV-RPV were all detected; BYDV-MAV was again the virus isolate most frequently found.
Resumo:
Developmental and biophysical leaf characteristics that influence post-harvest shelf life in lettuce, an important leafy crop, have been examined. The traits were studied using 60 informative F-9 recombinant inbed lines (RILs) derived from a cross between cultivated lettuce (Lactuca sativa cv. Salinas) and wild lettuce (L. serriola acc. UC96US23). Quantitative trait loci (QTLs) for shelf life co-located most closely with those for leaf biophysical properties such as plasticity, elasticity, and breakstrength, suggesting that these are appropriate targets for molecular breeding for improved shelf life. Significant correlations were found between shelf life and leaf size, leaf weight, leaf chlorophyll content, leaf stomatal index, and epidermal cell number per leaf, indicating that these pre-harvest leaf development traits confer post-harvest properties. By studying the population in two contrasting environments in northern and southern Europe, the genotype by environment interaction effects of the QTLs relevant to leaf development and shelf life were assessed. In total, 107 QTLs, distributed on all nine linkage groups, were detected from the 29 traits. Only five QTLs were common in both environments. Several areas where many QTLs co-located (hotspots) on the genome were identified, with relatively little overlap between developmental hotspots and those relating to shelf life. However, QTLs for leaf biophysical properties (breakstrength, plasticity, and elasticity) and cell area correlated well with shelf life, confirming that the ideal ideotype lettuce should have small cells with strong cell walls. The identification of QTLs for leaf development, strength, and longevity will lead to a better understanding of processability at a genetic and cellular level, and allow the improvement of salad leaf quality through marker-assisted breeding.
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and purpose: The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. Experimental approach: Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. Key results: The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB1 receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. Conclusions and implications: We show for the first time that Delta(9)-THCV acts as a functional CB1 receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB1 receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV-and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.
Resumo:
It is proposed that post-harvest longevity and appearance of salad crops is closely linked to pre-harvest leaf morphology (cell and leaf size) and biophysical structure (leaf strength). Transgenic lettuce plants (Lactuca sativa cv. Valeria) were produced in which the production of the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was down-regulated by antisense inhibition. Independently transformed lines were shown to have multiple members of the LsXTH gene family down-regulated in mature leaves of 6-week-old plants and during the course of shelf life. Consequently, xyloglucan endotransglucosylase (XET) enzyme activity and action were down-regulated in the cell walls of these leaves and it was established that leaf area and fresh weight were decreased while leaf strength was increased in the transgenic lines. Membrane permeability was reduced towards the end of shelf life in the transgenic lines relative to the controls and bacteria were evident inside the leaves of control plants only. Most importantly, an extended shelf-life of transgenic lines was observed relative to the non-transgenic control plants. These data illustrate the potential for engineering cell wall traits for improving quality and longevity of salad crops using either genetic modification directly, or by using markers associated with XTH genes to inform a commercial breeding programme.
Resumo:
The Cannabis sativa herb contains over 100 phytocannabinoid (pCB) compounds and has been used for thousands of years for both recreational and medicinal purposes. In the past two decades, characterisation of the body's endogenous cannabinoid (CB) (endocannabinoid, eCB) system (ECS) has highlighted activation of central CB1 receptors by the major pCB, Δ9-tetrahydrocannabinol (Δ9-THC) as the primary mediator of the psychoactive, hyperphagic and some of the potentially therapeutic properties of ingested cannabis. Whilst Δ9-THC is the most prevalent and widely studied pCB, it is also the predominant psychotropic component of cannabis, a property that likely limits its widespread therapeutic use as an isolated agent. In this regard, research focus has recently widened to include other pCBs including cannabidiol (CBD), cannabigerol (CBG), Δ9tetrahydrocannabivarin (Δ9-THCV) and cannabidivarin (CBDV), some of which show potential as therapeutic agents in preclinical models of CNS disease. Moreover, it is becoming evident that these non-Δ9-THC pCBs act at a wide range of pharmacological targets, not solely limited to CB receptors. Disorders that could be targeted include epilepsy, neurodegenerative diseases, affective disorders and the central modulation of feeding behaviour. Here, we review pCB effects in preclinical models of CNS disease and, where available, clinical trial data that support therapeutic effects. Such developments may soon yield the first non-Δ9-THC pCB-based medicines.
Resumo:
This study has investigated the antioxidant capacity of different woods used in cooperage and the effect of the botanical species of wood on this capacity. Quercus robur and Castanea sativa were the species with the highest antioxidant capacity, due to their relatively high content of phenolic compounds. However, the phenolic content of Prunus avium samples was very low, also reflected in its antioxidant capacity. All measurements of antioxidant capacity were consistent with the content and composition of the phenolic compounds detected in the wood samples. The major contributors to the antioxidant capacity were identified as phenolic acids, including gallic, protocatechuic, p-coumaric and ellagic acid and all the ellagitannins, due to their characteristic structure.
Resumo:
Physiological and yield traits such as stomatal conductance (mmol m-2s-1), Leaf relative water content (RWC %) and grain yield per plant were studied in a separate experiment. Results revealed that five out of sixteen cultivars viz. Anmol, Moomal, Sarsabz, Bhitai and Pavan, appeared to be relatively more drought tolerant. Based on morphophysiological results, studies were continued to look at these cultivars for drought tolerance at molecular level. Initially, four well recognized primers for dehydrin genes (DHNs) responsible for drought induction in T. durum L., T. aestivum L. and O. sativa L. were used for profiling gene sequence of sixteen wheat cultivars. The primers amplified the DHN genes variably like Primer WDHN13 (T. aestivum L.) amplified the DHN gene in only seven cultivars whereas primer TdDHN15 (T. durum L.) amplified all the sixteen cultivars with even different DNA banding patterns some showing second weaker DNA bands. Third primer TdDHN16 (T. durum L.) has shown entirely different PCR amplification prototype, specially showing two strong DNA bands while fourth primer RAB16C (O. sativa L.) failed to amplify DHN gene in any of the cultivars. Examination of DNA sequences revealed several interesting features. First, it identified the two exon/one intron structure of this gene (complete sequences were not shown), a feature not previously described in the two database cDNA sequences available from T. aestivum L. (gi|21850). Secondly, the analysis identified several single nucleotide polymorphisms (SNPs), positions in gene sequence. Although complete gene sequence was not obtained for all the cultivars, yet there were a total of 38 variable positions in exonic (coding region) sequence, from a total gene length of 453 nucleotides. Matrix of SNP shows these 37 positions with individual sequence at positions given for each of the 14 cultivars (sequence of two cultivars was not obtained) included in this analysis. It demonstrated a considerable diversity for this gene with only three cultivars i.e. TJ-83, Marvi and TD-1 being similar to the consensus sequence. All other cultivars showed a unique combination of SNPs. In order to prove a functional link between these polymorphisms and drought tolerance in wheat, it would be necessary to conduct a more detailed study involving directed mutation of this gene and DHN gene expression.