921 resultados para Organoplatinum Compounds
Resumo:
The present study compares the impact of thermal and high pressure high temperature(HPHT) processing on volatile profile (via a non-targeted headspace fingerprinting) and structural and nutritional quality parameter (via targeted approaches) of orange and yellow carrot purees. The effect of oil enrichment was also considered. Since oil enrichment affects compounds volatility, the effect of oil was not studied when comparing the volatile fraction. For the targeted part, as yellow carrot purees were shown to contain a very low amount of carotenoids, focus was given to orange carrot purees. The results of the non-targeted approach demonstrated HPHT processing exerts a distinct effect on the volatile fractions compared to thermal processing. In addition, different colored carrot varieties are characterized by distinct headspace fingerprints. From a structural point of view, limited or no difference could be observed between orange carrot purees treated with HPHT or HT processes, both for samples without and with oil. From nutritional point of view, only in samples with oil, significant isomerisation of all-trans-β-carotene occurred due to both processing. Overall, for this type of product and for the selected conditions, HPHT processing seems to have a different impact on the volatile profile but rather similar impact on the structural and nutritional attributes compared to thermal processing.
Resumo:
Background: In many experimental pipelines, clustering of multidimensional biological datasets is used to detect hidden structures in unlabelled input data. Taverna is a popular workflow management system that is used to design and execute scientific workflows and aid in silico experimentation. The availability of fast unsupervised methods for clustering and visualization in the Taverna platform is important to support a data-driven scientific discovery in complex and explorative bioinformatics applications. Results: This work presents a Taverna plugin, the Biological Data Interactive Clustering Explorer (BioDICE), that performs clustering of high-dimensional biological data and provides a nonlinear, topology preserving projection for the visualization of the input data and their similarities. The core algorithm in the BioDICE plugin is Fast Learning Self Organizing Map (FLSOM), which is an improved variant of the Self Organizing Map (SOM) algorithm. The plugin generates an interactive 2D map that allows the visual exploration of multidimensional data and the identification of groups of similar objects. The effectiveness of the plugin is demonstrated on a case study related to chemical compounds. Conclusions: The number and variety of available tools and its extensibility have made Taverna a popular choice for the development of scientific data workflows. This work presents a novel plugin, BioDICE, which adds a data-driven knowledge discovery component to Taverna. BioDICE provides an effective and powerful clustering tool, which can be adopted for the explorative analysis of biological datasets.
Resumo:
The feasibility to synthesize, in large quantity, pure and non-toxic tetrahedrite compounds using high-energy mechanical-alloying from only elemental precursors is reported in the present paper for the first time. Our processing technique allows a better control of the final product composition and leads to high thermoelectric performances (ZT of 0.75 at 700 K), comparable to that reported on sealed tube synthesis samples. Combined with spark plasma sintering, the production of highly pure and dense samples is achieved in a very short time, at least 8 times shorter than in conventional liquid-solid-vapor synthesis process. The process described in this paper is a promising way to produce high performance tetrahedrite materials for cost-effective and large-scale thermoelectric applications.
Resumo:
Bulk polycrystalline samples in the series Ti1−xNbxS2 (0 ≤ x ≤ 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20–50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x = 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x = 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite/grain size and structural defects.
Resumo:
The present research explores the degree of morphological structure of compound words in the native and nonnative lexicons, and provides additional data on the access to these representations. Native and nonnative speakers (L1 Spanish) of English were tested using a lexical decision task with masked priming of the compound’s constituents in isolation, including two orthographic conditions to control for a potential orthographic locus of effects. Both groups displayed reliable priming effects, unmediated by semantics, for the morphological but not the orthographic conditions as compared to an unrelated baseline. Results contribute further evidence of morphological structure in the lexicon of native speakers, and suggest that lexical representation and access in a second language are qualitatively comparable at relatively advanced levels of proficiency.
Resumo:
The radiation food processing has been demonstrating great effectiveness in the attack of pathogenic agents, while little compromising nutritional value and sensorial properties of foods. The mate (Ilex paraguariensis), widely consumed product in South America, generally in the form of infusions with hot or cold water, calls of chimarrao or terere, it is cited in literature as one of the best sources phenolic compounds. The antioxidants action of these constituent has been related to the protection of the organism against the free radicals, generated in alive, currently responsible for the sprouting of some degenerative illness as cancer, arteriosclerosis, rheumatic arthritis and cardiovascular clutters among others. The objective of that work was to evaluate the action of the processing for gamma radiation in phenolic compounds of terere beverage in the doses of 0, 3, 5, 7 and 10 kGy. The observed results do not demonstrate significant alterations in phenolic compounds of terere beverage processed by gamma radiation. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
Resumo:
A method for the determination of volatile organic compounds (VOCs) in recycled polyethylene terephthalate and high-density polyethylene using headspace sampling by solid-phase microextraction and gas chromatography coupled to mass spectrometry detection is presented. This method was used to evaluate the efficiency of cleaning processes for VOC removal from recycled PET. In addition, the method was also employed to evaluate the level of VOC contamination in multilayer packaging material containing recycled HDPE material. The optimisation of the extraction procedure for volatile compounds was performed and the best extraction conditions were found using a 75 mu m carboxen-polydimethylsiloxane (CAR-PDMS) fibre for 20 min at 60 degrees C. The validation parameters for the established method were linear range, linearity, sensitivity, precision (repeatability), accuracy (recovery) and detection and quantification limits. The results indicated that the method could easily be used in quality control for the production of recycled PET and HDPE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Different extraction processes were employed to extract the polyphenolic compounds from pitanga (Eugenia uniflora L) leaves: a one-step process using water, ethanol or supercritical CO(2) as solvents, and a two-step process using supercritical CO(2) followed by either water or ethanol. The total polyphenolic compounds, total flavonoids and antioxidant activity were determined in all the extracts obtained. The process performance was evaluated with respect to three variables: global extraction yield, concentration and yield of both polyphenols and flavonoids in the extracts. For the one-step extraction, the results showed that the extraction yield increased with solvent polarity. For the two-step process, the results suggested that water was more efficient in extracting the phenolic compounds from E. uniflora when the matrix was previously extracted with scCO(2). With respect to the antioxidant activity, the ethanolic extracts obtained from both processes, using either the DPPH radical scavenging method or the beta-carotene bleaching method, presented high antioxidant activities. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Supercritical carbon dioxide (SC-CO(2)) extractions of Brazilian cherry (Eugenia uniflora L.) were carried out under varied conditions of pressure and temperature, according to a central composite 2(2) experimental design, in order to produce flavour-rich extracts. The composition of the extracts was evaluated by gas chromatography coupled with mass spectrometry (GC/MS). The abundance of the extracted compounds was then related to sensory analysis results, assisted by principal component and factorial discriminant analysis (PCA and FDA, respectively). The identified sesquiterpenes and ketones were found to strongly contribute to the characteristic flavour of the Brazilian cherry. The extracts also contained a variety of other volatile compounds, and part of the fruit wax contained long-chain hydrocarbons that according to multivariate analysis, contributed to the yield of the extracts, but not the flavour. Volatile phenolic compounds, to which antioxidant properties are attributed, were also present in the extracts in high proportion, regardless of the extraction conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present work, a group contribution method is proposed for the estimation of viscosity of fatty compounds and biodiesel esters as a function of the temperature. The databank used for regression of the group contribution parameters (1070 values for 65 types of substances) included fatty compounds, such as fatty acids, methyl and ethyl esters and alcohols, tri- and diacylglycerols, and glycerol. The inclusion of new experimental data for fatty esters, a partial acylglycerol, and glycerol allowed for a further refinement in the performance of this methodology in comparison to a prior group contribution equation (Ceriani, R.; Goncalves, C. B.; Rabelo, J.; Caruso, M.; Cunha, A. C. C.; Cavaleri, F. W.; Batista, E. A. C.; Meirelles, A. J. A. Group contribution model for predicting viscosity of fatty compounds. J. Chem. Eng. Data 2007, 52, 965-972) for all classes of fatty compounds. Besides, the influence of small concentrations of partial acylglycerols, intermediate compounds in the transesterification reaction, in the viscosity of biodiesels was also investigated.
Resumo:
In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of Sao Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22-24 and March 13-15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO(x) emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO(x) in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH>2x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.
Resumo:
The defensive, secretions, of five neotropical) species of harvestmen, (Opiliones: Gonyleptidae) from the Brazilian Atlantic Forest were analyzed and chemically characterized by GC-MS and NMR Methods. Three of the species, Cobania picea, Roweria virescens, and Serracutisoma proximum, secrete a mixture of 2,3-dimethyl-1,4-benzoquinone and 2-ethyl-3methyl-1,4,4-benzoquinone. The secretions produced,by the Other two species Iporangaia pustulosa and Neosadocus maximus, contain 1-hepten-3-one, 5-methyl-1-hexen-3-one, and 1-(6-butyl-3,4-dihydro-2H-pyran-2-yl)pentanone. (1)as major components, as well as,2,3-dimethyl-1.,4-benzoquinone and 2-ethyl-3 methyl-1,4-benzoquinone as minor,constituents. The. dihydropyran 1-(6-butyl-3,4-dihydro-2H-pyran-2-yl)pentanone (1) is a new natural product, composed of two 1-hepten-3-one, subunits formally linked in a hetero-Diels-Alder reaction. The natural product was proven to be racemic, and its biogenetic origin is discussed.
Resumo:
Asymmetric emission profiles of the stereoisomers of plant-derived volatile organic compounds vary with season, geography, plant type, and stress factors. After oxidation of these compounds in the atmosphere, the low-vapor pressure products ultimately contribute strongly to the particle-phase material of the atmosphere. In order to explore the possibility of stereochemical transfer to atmospheric aerosol particles during the oxidation of biogenic volatile organic compounds, second-order coherent vibrational spectra were recorded of the particle-phase organic material produced by the oxidation of different stereoisomeric mixes of alpha-pinene. The spectra show that the stereochemical configurations are not scrambled but instead are transferred from the gas-phase molecular precursors to the particle-phase molecules. The spectra also show that oligomers formed in the particle phase have a handed superstructure that depends strongly and nonlinearly on the initial stereochemical composition of the precursors. Because the stereochemical mix of the precursors for a material can influence the physical and chemical properties of that material, our findings suggest that chirality is also important for such properties of plant-derived aerosol particles. Citation: Ebben, C. J., S. R. Zorn, S.-B. Lee, P. Artaxo, S. T. Martin, and F. M. Geiger (2011), Stereochemical transfer to atmospheric aerosol particles accompanying the oxidation of biogenic volatile organic compounds, Geophys. Res. Lett., 38, L16807, doi: 10.1029/2011GL048599.
Resumo:
Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Small-angle X-ray scattering (SAXS) and electron paramagnetic resonance (EPR) have been carried out to investigate the structure of the self-aggregates of two phenothiazine drugs, chlorpromazine (CPZ) and trifluoperazine (TFP), in aqueous solution. In the SAXS studies, drug solutions of 20 and 60 mM, at pH 4.0 and 7.0, were investigated and the best data fittings were achieved assuming several different particle form factors with a homogeneous electron density distribution in respect to the water environment. Because of the limitation of scattering intensity in the q range above 0.15 angstrom(-1), precise determination of the aggregate shape was not possible and all of the tested models for ellipsoids, cylinders, or parallelepipeds fitted the experimental data equally well. The SAXS data allows inferring, however, that CPZ molecules might self-assemble in a basis set of an orthorhombic cell, remaining as nanocrystallites in solution. Such nanocrystals are composed of a small number of unit cells (up to 10, in c-direction), with CPZ aggregation numbers of 60-80. EPR spectra of 5- and 16-doxyl stearic acids bound to the aggregates were analyzed through simulation, and the dynamic and magnetic parameters were obtained. The phenothiazine concentration in EPR experiments was in the range of 5-60 mM. Critical aggregation concentration of TFP is lower than that for CPZ, consistent with a higher hydrophobicity of TFP. At acidic pH 4.0 a significant residual motion of the nitroxide relative to the aggregate is observed, and the EPR spectra and corresponding parameters are similar to those reported for aqueous surfactant micelles. However, at pH 6.5 a significant motional restriction is observed, and the nitroxide rotational correlation times correlate very well with those estimated for the whole aggregated particle from SAXS data. This implies that the aggregate is densely packed at this pH and that the nitroxide is tightly bound to it producing a strongly immobilized EPR spectrum. Besides that, at pH 6.5 the differences in motional restriction observed between 5- and 16-DSA are small, which is different from that observed for aqueous surfactant micelles.