866 resultados para Ordinary Least Squares Method
Resumo:
Advances in symptom management strategies through a better understanding of cancer symptom clusters depend on the identification of symptom clusters that are valid and reliable. The purpose of this exploratory research was to investigate alternative analytical approaches to identify symptom clusters for patients with cancer, using readily accessible statistical methods, and to justify which methods of identification may be appropriate for this context. Three studies were undertaken: (1) a systematic review of the literature, to identify analytical methods commonly used for symptom cluster identification for cancer patients; (2) a secondary data analysis to identify symptom clusters and compare alternative methods, as a guide to best practice approaches in cross-sectional studies; and (3) a secondary data analysis to investigate the stability of symptom clusters over time. The systematic literature review identified, in 10 years prior to March 2007, 13 cross-sectional studies implementing multivariate methods to identify cancer related symptom clusters. The methods commonly used to group symptoms were exploratory factor analysis, hierarchical cluster analysis and principal components analysis. Common factor analysis methods were recommended as the best practice cross-sectional methods for cancer symptom cluster identification. A comparison of alternative common factor analysis methods was conducted, in a secondary analysis of a sample of 219 ambulatory cancer patients with mixed diagnoses, assessed within one month of commencing chemotherapy treatment. Principal axis factoring, unweighted least squares and image factor analysis identified five consistent symptom clusters, based on patient self-reported distress ratings of 42 physical symptoms. Extraction of an additional cluster was necessary when using alpha factor analysis to determine clinically relevant symptom clusters. The recommended approaches for symptom cluster identification using nonmultivariate normal data were: principal axis factoring or unweighted least squares for factor extraction, followed by oblique rotation; and use of the scree plot and Minimum Average Partial procedure to determine the number of factors. In contrast to other studies which typically interpret pattern coefficients alone, in these studies symptom clusters were determined on the basis of structure coefficients. This approach was adopted for the stability of the results as structure coefficients are correlations between factors and symptoms unaffected by the correlations between factors. Symptoms could be associated with multiple clusters as a foundation for investigating potential interventions. The stability of these five symptom clusters was investigated in separate common factor analyses, 6 and 12 months after chemotherapy commenced. Five qualitatively consistent symptom clusters were identified over time (Musculoskeletal-discomforts/lethargy, Oral-discomforts, Gastrointestinaldiscomforts, Vasomotor-symptoms, Gastrointestinal-toxicities), but at 12 months two additional clusters were determined (Lethargy and Gastrointestinal/digestive symptoms). Future studies should include physical, psychological, and cognitive symptoms. Further investigation of the identified symptom clusters is required for validation, to examine causality, and potentially to suggest interventions for symptom management. Future studies should use longitudinal analyses to investigate change in symptom clusters, the influence of patient related factors, and the impact on outcomes (e.g., daily functioning) over time.
Resumo:
The task addressed in this thesis is the automatic alignment of an ensemble of misaligned images in an unsupervised manner. This application is especially useful in computer vision applications where annotations of the shape of an object of interest present in a collection of images is required. Performing this task manually is a slow, tedious, expensive and error prone process which hinders the progress of research laboratories and businesses. Most recently, the unsupervised removal of geometric variation present in a collection of images has been referred to as congealing based on the seminal work of Learned-Miller [21]. The only assumption made in congealing is that the parametric nature of the misalignment is known a priori (e.g. translation, similarity, a�ne, etc) and that the object of interest is guaranteed to be present in each image. The capability to congeal an ensemble of misaligned images stemming from the same object class has numerous applications in object recognition, detection and tracking. This thesis concerns itself with the construction of a congealing algorithm titled, least-squares congealing, which is inspired by the well known image to image alignment algorithm developed by Lucas and Kanade [24]. The algorithm is shown to have superior performance characteristics when compared to previously established methods: canonical congealing by Learned-Miller [21] and stochastic congealing by Z�ollei [39].
Resumo:
There are a number of gel dosimeter calibration methods in contemporary usage. The present study is a detailed Monte Carlo investigation into the accuracy of several calibration techniques. Results show that for most arrangements the dose to gel accurately reflects the dose to water, with the most accurate method involving the use of a large diameter flask of gel into which multiple small fields of varying dose are directed. The least accurate method was found to be that of a long test tube in a water phantom, coaxial with the beam. The large flask method is also the most straightforward and least likely to introduce errors during setup, though, to its detriment, the volume of gel required is much more than other methods.
Resumo:
Purpose: The purpose of this empirical paper is to investigate internal marketing from a behavioural perspective. The impact of internal marketing behaviours, operationalised as an internal market orientation (IMO), on employees’ marketing and other in-role behaviours (IRB) were examined. ---------- Design/methodology/approach: Survey data measuring IMO, market orientation and a range of constructs relevant to the nomological network in which they are embedded were collected from the UK retail managers. These were tested to establish their psychometric properties and the conceptual model was analysed using structural equations modelling, employing a partial least squares methodology. ---------- Findings: IMO has positive consequences for employees’ market-oriented and other IRB. These, in turn, influence marketing success. Research limitations/implications – The paper provides empirical support for the long-held assumption that internal and external marketing are related and that organisations should balance their external focus with some attention to employees. Future research could measure the attitudes and behaviours of managers, employees and customers directly and explore the relationships between them. ---------- Practical implications: Firm must ensure that they do not put the needs of their employees second to those of managers and shareholders; managers must develop their listening skills and organisations must become more responsive to the needs of their employees. ---------- Originality/value: The paper contributes to the scarce body of empirical support for the role of internal marketing in services organisations. For researchers, this paper legitimises the study of internal marketing as a route to external market success; for managers, the study provides quantifiable evidence that focusing on employees’ wants and needs impacts their behaviours towards the market.
Resumo:
Purpose: The purpose of this paper is to explain variations in discretionary information shared between buyers and key suppliers. The paper also aims to examine how the extent of information shared affects buyers’ performance in terms of resource usage, output, and flexibility. ----- ----- Design/methodology/approach: The data for the paper comprise 221 Finnish and Swedish non-service companies obtained through a mail survey. The hypothesized relationships were tested using partial least squares modelling with reflective and formative constructs.----- ----- Findings: The results of the study suggest that (environmental and demand) uncertainty and interdependency can to some degree explain the extent of information shared between a buyer and key supplier. Furthermore, information sharing improves buyers’ performance with respect to resource usage, output, and flexibility.----- ----- Research limitations/implications: A limitation to the paper relates to the data, which only included buyers.Abetter approach would have been to collect data from both, buyers and key suppliers. Practical implications – Companies face a wide range of supply chain solutions that enable and encourage collaboration across organizations. This paper suggests a more selective and balanced approach toward adopting the solutions offered as the benefits are contingent on a number of factors such as uncertainty. Also, the risks of information sharing are far too high for a one size fits all approach.----- ----- Originality/value: The paper illustrates the applicability of transaction cost theory to the contemporary era of e-commerce. With this finding, transaction cost economics can provide a valuable lens with which to view and interpret interorganizational information sharing, a topic that has received much attention in the recent years.
Resumo:
A model to predict the buildup of mainly traffic-generated volatile organic compounds or VOCs (toluene, ethylbenzene, ortho-xylene, meta-xylene, and para-xylene) on urban road surfaces is presented. The model required three traffic parameters, namely average daily traffic (ADT), volume to capacity ratio (V/C), and surface texture depth (STD), and two chemical parameters, namely total suspended solid (TSS) and total organic carbon (TOC), as predictor variables. Principal component analysis and two phase factor analysis were performed to characterize the model calibration parameters. Traffic congestion was found to be the underlying cause of traffic-related VOC buildup on urban roads. The model calibration was optimized using orthogonal experimental design. Partial least squares regression was used for model prediction. It was found that a better optimized orthogonal design could be achieved by including the latent factors of the data matrix into the design. The model performed fairly accurately for three different land uses as well as five different particle size fractions. The relative prediction errors were 10–40% for the different size fractions and 28–40% for the different land uses while the coefficients of variation of the predicted intersite VOC concentrations were in the range of 25–45% for the different size fractions. Considering the sizes of the data matrices, these coefficients of variation were within the acceptable interlaboratory range for analytes at ppb concentration levels.
Resumo:
The interaction of 10-hydroxycamptothecine (HCPT) with DNA under pseudo-physiological conditions (Tris-HCl buffer of pH 7.4), using ethidium bromide (EB) dye as a probe, was investigated with the use of spectrofluorimetry, UV-vis spectrometry and viscosity measurement. The binding constant and binding number for HCPT with DNA were evaluated as (7.1 ± 0.5) × 104 M-1 and 1.1, respectively, by multivariate curve resolution-alternating least squares (MCR-ALS). Moreover, parallel factor analysis (PARAFAC) was applied to resolve the three-way fluorescence data obtained from the interaction system, and the concentration information for the three components of the system at equilibrium was simultaneously obtained. It was found that there was a cooperative interaction between the HCPT-DNA complex and EB, which produced a ternary complex of HCPT-DNA-EB. © 2011 Elsevier B.V.
Resumo:
In semisupervised learning (SSL), a predictive model is learn from a collection of labeled data and a typically much larger collection of unlabeled data. These paper presented a framework called multi-view point cloud regularization (MVPCR), which unifies and generalizes several semisupervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbert spaces (RKHSs). Special cases of MVPCR include coregularized least squares (CoRLS), manifold regularization (MR), and graph-based SSL. An accompanying theorem shows how to reduce any MVPCR problem to standard supervised learning with a new multi-view kernel.