1000 resultados para Optimization procedures


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality at CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computed tomography (CT) is a modality of choice for the study of the musculoskeletal system for various indications including the study of bone, calcifications, internal derangements of joints (with CT arthrography), as well as periprosthetic complications. However, CT remains intrinsically limited by the fact that it exposes patients to ionizing radiation. Scanning protocols need to be optimized to achieve diagnostic image quality at the lowest radiation dose possible. In this optimization process, the radiologist needs to be familiar with the parameters used to quantify radiation dose and image quality. CT imaging of the musculoskeletal system has certain specificities including the focus on high-contrast objects (i.e., in CT of bone or CT arthrography). These characteristics need to be taken into account when defining a strategy to optimize dose and when choosing the best combination of scanning parameters. In the first part of this review, we present the parameters used for the evaluation and quantification of radiation dose and image quality. In the second part, we discuss different strategies to optimize radiation dose and image quality of CT, with a focus on the musculoskeletal system and the use of novel iterative reconstruction techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Concomitant aortic and mitral valve replacement or concomitant aortic valve replacement and mitral repair can be a challenge for the cardiac surgeon: in particular, because of their structure and design, two bioprosthetic heart valves or an aortic valve prosthesis and a rigid mitral ring can interfere at the level of the mitroaortic junction. Therefore, when a mitral bioprosthesis or a rigid mitral ring is already in place and a surgical aortic valve replacement becomes necessary, or when older high-risk patients require concomitant mitral and aortic procedures, the new 'fast-implantable' aortic valve system (Intuity valve, Edwards Lifesciences, Irvine, CA, USA) can represent a smart alternative to standard aortic bioprosthesis. Unfortunately, this is still controversial (risk of interference). However, transcatheter aortic valve replacements have been performed in patients with previously implanted mitral valves or mitral rings. Interestingly, we learned that there is no interference (or not significant interference) among the standard valve and the stent valve. Consequently, we can assume that a fast-implantable valve can also be safely placed next to a biological mitral valve or next to a rigid mitral ring without risks of distortion, malpositioning, high gradient or paravalvular leak. This paper describes two cases: a concomitant Intuity aortic valve and bioprosthetic mitral valve implantation and a concomitant Intuity aortic valve and mitral ring implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapping the microstructure properties of the local tissues in the brain is crucial to understand any pathological condition from a biological perspective. Most of the existing techniques to estimate the microstructure of the white matter assume a single axon orientation whereas numerous regions of the brain actually present a fiber-crossing configuration. The purpose of the present study is to extend a recent convex optimization framework to recover microstructure parameters in regions with multiple fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective To suggest a national value for the diagnostic reference level (DRL) in terms of activity in MBq.kg–1, for nuclear medicine procedures with fluorodeoxyglucose (18F-FDG) in whole body positron emission tomography (PET) scans of adult patients. Materials and Methods A survey on values of 18F-FDG activity administered in Brazilian clinics was undertaken by means of a questionnaire including questions about number and manufacturer of the installed equipment, model and detector type. The suggested DRL value was based on the calculation of the third quartile of the activity values distribution reported by the clinics. Results Among the surveyed Brazilian clinics, 58% responded completely or partially the questionnaire; and the results demonstrated variation of up to 100% in the reported radiopharmaceutical activity. The suggested DRL for 18F-FDG/PET activity was 5.54 MBq.kg–1 (0.149 mCi.kg–1). Conclusion The present study has demonstrated the lack of standardization in administered radiopharmaceutical activities for PET procedures in Brazil, corroborating the necessity of an official DRL value to be adopted in the country. The suggested DLR value demonstrates that there is room for optimization of the procedures and 18F-FDG/PET activities administered in Brazilian clinics to reduce the doses delivered to patients. It is important to highlight that this value should be continually revised and optimized at least every five years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of transcatheter aortic valve implantations, structural heart procedures and the newly developed transcatheter mitral valve repair and replacement are traditionally performed either through a transfemoral or a transapical access site, depending on the presence of severe peripheral vascular disease or anatomic limitations. The transapical approach, which carries specific advantages related to its antegrade nature and the short distance between the introduction site and the cardiac target, is traditionally performed through a left anterolateral mini-thoracotomy and requires rib retractors, soft tissue retractors and reinforced apical sutures to secure, at first, the left ventricular apex for the introduction of the stent-valve delivery systems and then to seal the access site at the end of the procedure. However, despite the advent of low-profile apical sheaths and newly designed delivery systems, the apical approach represents a challenge for the surgeon, as it has the risk of apical tear, life-threatening apical bleeding, myocardial damage, coronary damage and infections. Last but not least, the use of large-calibre stent-valve delivery systems and devices through standard mini-thoracotomies compromises any attempt to perform transapical transcatheter structural heart procedures entirely percutaneously, as happens with the transfemoral access site, or via a thoracoscopic or a miniaturised video-assisted percutaneous technique. During the past few years, prototypes of apical access and closure devices for transapical heart valve procedures have been developed and tested to make this standardised successful procedure easier. Some of them represent an important step towards the development of truly percutaneous transcatheter transapical heart valve procedures in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Given their central role in mercury (Hg) excretion and suitability as reservoirs, bird feathers are useful Hg biomonitors. Nevertheless, the interpretation of Hg concentrations is still questioned as a result of a poor knowledge of feather physiology and mechanisms affecting Hg deposition. Given the constraints of feather availability to ecotoxicological studies, we tested the effect of intra-individual differences in Hg concentrations according to feather type (body vs. flight feathers), position in the wing and size (mass and length) in order to understand how these factors could affect Hg estimates. We measured Hg concentration of 154 feathers from 28 un-moulted barn owls (Tyto alba), collected dead on roadsides. Median Hg concentration was 0.45 (0.076-4.5) mg kg(-1) in body feathers, 0.44 (0.040-4.9) mg kg(-1) in primary and 0.60 (0.042-4.7) mg kg(-1) in secondary feathers, and we found a poor effect of feather type on intra-individual Hg levels. We also found a negative effect of wing feather mass on Hg concentration but not of feather length and of its position in the wing. We hypothesize that differences in feather growth rate may be the main driver of between-feather differences in Hg concentrations, which can have implications in the interpretation of Hg concentrations in feathers. Finally, we recommend that, whenever possible, several feathers from the same individual should be analysed. The five innermost primaries have lowest mean deviations to both between-feather and intra-individual mean Hg concentration and thus should be selected under restrictive sampling scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The present study was aimed at estimating the doses received by physicians and patients during cerebral angiography procedures in a public hospital of Recife, PE, Brazil. Materials and Methods The study sample included 158 adult patients, and during the procedures the following parameters were evaluated: exposure parameters (kV, mAs), number of acquired images, reference air kerma value (Ka,r) and air kerma-area product (PKA). Additionally, the physicians involved in the procedures were evaluated as for absorbed dose in the eyes, thyroid, chest, hands and feet. Results The results demonstrated that the doses to the patients' eyes region were relatively close to the threshold for cataract occurrence. As regards the physicians, the average effective dose was 2.6 µSv, and the highest effective dose recorded was 16 µSv. Conclusion Depending on the number of procedures, the doses received by the physicians may exceed the annual dose limit for the crystalline lenses (20 mSv) established by national and international standards. It is important to note that the high doses received by the physicians are due to the lack of radiation protection equipment and accessories, such as leaded curtains, screens and protective goggles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractObjective:The present study is aimed at contributing to identify the most appropriate OSEM parameters to generate myocardial perfusion imaging reconstructions with the best diagnostic quality, correlating them with patients' body mass index.Materials and Methods:The present study included 28 adult patients submitted to myocardial perfusion imaging in a public hospital. The OSEM method was utilized in the images reconstruction with six different combinations of iterations and subsets numbers. The images were analyzed by nuclear cardiology specialists taking their diagnostic value into consideration and indicating the most appropriate images in terms of diagnostic quality.Results:An overall scoring analysis demonstrated that the combination of four iterations and four subsets has generated the most appropriate images in terms of diagnostic quality for all the classes of body mass index; however, the role played by the combination of six iterations and four subsets is highlighted in relation to the higher body mass index classes.Conclusion:The use of optimized parameters seems to play a relevant role in the generation of images with better diagnostic quality, ensuring the diagnosis and consequential appropriate and effective treatment for the patient.