930 resultados para Optimal control design


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Permanent magnet synchronous motors (PMSMs) provide a competitive technology for EV traction drives owing to their high power density and high efficiency. In this paper, three types of interior PMSMs with different PM arrangements are modeled by the finite element method (FEM). For a given amount of permanent magnet materials, the V-shape interior PMSM is found better than the U-shape and the conventional rotor topologies for EV traction drives. Then the V-shape interior PMSM is further analyzed with the effects of stator slot opening and the permanent magnet pole chamfering on cogging torque and output torque performance. A vector-controlled flux-weakening method is developed and simulated in Matlab to expand the motor speed range for EV drive system. The results show good dynamic and steady-state performance with a capability of expanding speed up to four times of the rated. A prototype of the V-shape interior PMSM is also manufactured and tested to validate the numerical models built by the FEM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ingold port adaption of a free beam NIR spectrometer is tailored for optimal bioprocess monitoring and control. The device shows an excellent signal to noise ratio dedicated to a large free aperture and therefore a large sample volume. This can be seen particularly in the batch trajectories which show a high reproducibility. The robust and compact design withstands rough process environments as well as SIP/CIP cycles. Robust free beam NIR process analyzers are indispensable tools within the PAT/QbD framework for realtime process monitoring and control. They enable multiparametric, non-invasive measurements of analyte concentrations and process trajectories. Free beam NIR spectrometers are an ideal tool to define golden batches and process borders in the sense of QbD. Moreover, sophisticated data analysis both quantitative and MSPC yields directly to a far better process understanding. Information can be provided online in easy to interpret graphs which allow the operator to make fast and knowledge-based decisions. This finally leads to higher stability in process operation, better performance and less failed batches.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Electrical neuromodulation of lumbar segments improves motor control after spinal cord injury in animal models and humans. However, the physiological principles underlying the effect of this intervention remain poorly understood, which has limited the therapeutic approach to continuous stimulation applied to restricted spinal cord locations. Here we developed stimulation protocols that reproduce the natural dynamics of motoneuron activation during locomotion. For this, we computed the spatiotemporal activation pattern of muscle synergies during locomotion in healthy rats. Computer simulations identified optimal electrode locations to target each synergy through the recruitment of proprioceptive feedback circuits. This framework steered the design of spatially selective spinal implants and real-time control software that modulate extensor and flexor synergies with precise temporal resolution. Spatiotemporal neuromodulation therapies improved gait quality, weight-bearing capacity, endurance and skilled locomotion in several rodent models of spinal cord injury. These new concepts are directly translatable to strategies to improve motor control in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper discusses how to design a Radial Line Slot Antenna (RLSA) whose waveguide is filled with high loss dielectric materials. We introduce a new design for the aperture slot coupling synthesis to restrain the dielectric losses and improve the antenna gain. Based on a newly defined slot coupling, a number of RLSAs with different sizes and loss factors are analyzed and their performances are predicted. Theoretical calculations suggest that the gain is sensitive to the material losses in the radial lines. The gain enhancement by using the new coupling formula is notable for larger antenna size and higher loss factor of the dielectric material. Three prototype RLSAs are designed and fabricated at 60GHz following different slot coupling syntheses, and their measured performances consolidate our theory.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectifs: Examiner les tendances temporelles, les déterminants en lien avec le design des études et la qualité des taux de réponse rapportés dans des études cas-témoins sur le cancer publiées lors des 30 dernières années. Méthodes: Une revue des études cas-témoins sur le cancer a été menée. Les critères d'inclusion étaient la publication (i) dans l’un de 15 grands périodiques ciblés et (ii) lors de quatre périodes de publication (1984-1986, 1995, 2005 et 2013) couvrant trois décennies. 370 études ont été sélectionnées et examinées. La méthodologie en lien avec le recrutement des sujets et la collecte de données, les caractéristiques de la population, les taux de participation et les raisons de la non-participation ont été extraites de ces études. Des statistiques descriptives ont été utilisées pour résumer la qualité des taux de réponse rapportés (en fonction de la quantité d’information disponible), les tendances temporelles et les déterminants des taux de réponse; des modèles de régression linéaire ont été utilisés pour analyser les tendances temporelles et les déterminants des taux de participation. Résultats: Dans l'ensemble, les qualités des taux de réponse rapportés et des raisons de non-participation étaient très faible, particulièrement chez les témoins. La participation a diminué au cours des 30 dernières années, et cette baisse est plus marquée dans les études menées après 2000. Lorsque l'on compare les taux de réponse dans les études récentes a ceux des études menées au cours de 1971 à 1980, il y a une plus grande baisse chez les témoins sélectionnés en population générale ( -17,04%, IC 95%: -23,17%, -10,91%) que chez les cas (-5,99%, IC 95%: -11,50%, -0,48%). Les déterminants statistiquement significatifs du taux de réponse chez les cas étaient: le type de cancer examiné, la localisation géographique de la population de l'étude, et le mode de collecte des données. Le seul déterminant statistiquement significatif du taux de réponse chez les témoins hospitaliers était leur localisation géographique. Le seul déterminant statistiquement significatif du taux de participation chez les témoins sélectionnés en population générale était le type de répondant (sujet uniquement ou accompagné d’une tierce personne). Conclusion: Le taux de participation dans les études cas-témoins sur le cancer semble avoir diminué au cours des 30 dernières années et cette baisse serait plus marquée dans les études récentes. Afin d'évaluer le niveau réel de non-participation et ses déterminants, ainsi que l'impact de la non-participation sur la validité des études, il est nécessaire que les études publiées utilisent une approche normalisée pour calculer leurs taux de participation et qu’elles rapportent ceux-ci de façon transparente.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modern power networks incorporate communications and information technology infrastructure into the electrical power system to create a smart grid in terms of control and operation. The smart grid enables real-time communication and control between consumers and utility companies allowing suppliers to optimize energy usage based on price preference and system technical issues. The smart grid design aims to provide overall power system monitoring, create protection and control strategies to maintain system performance, stability and security. This dissertation contributed to the development of a unique and novel smart grid test-bed laboratory with integrated monitoring, protection and control systems. This test-bed was used as a platform to test the smart grid operational ideas developed here. The implementation of this system in the real-time software creates an environment for studying, implementing and verifying novel control and protection schemes developed in this dissertation. Phasor measurement techniques were developed using the available Data Acquisition (DAQ) devices in order to monitor all points in the power system in real time. This provides a practical view of system parameter changes, system abnormal conditions and its stability and security information system. These developments provide valuable measurements for technical power system operators in the energy control centers. Phasor Measurement technology is an excellent solution for improving system planning, operation and energy trading in addition to enabling advanced applications in Wide Area Monitoring, Protection and Control (WAMPAC). Moreover, a virtual protection system was developed and implemented in the smart grid laboratory with integrated functionality for wide area applications. Experiments and procedures were developed in the system in order to detect the system abnormal conditions and apply proper remedies to heal the system. A design for DC microgrid was developed to integrate it to the AC system with appropriate control capability. This system represents realistic hybrid AC/DC microgrids connectivity to the AC side to study the use of such architecture in system operation to help remedy system abnormal conditions. In addition, this dissertation explored the challenges and feasibility of the implementation of real-time system analysis features in order to monitor the system security and stability measures. These indices are measured experimentally during the operation of the developed hybrid AC/DC microgrids. Furthermore, a real-time optimal power flow system was implemented to optimally manage the power sharing between AC generators and DC side resources. A study relating to real-time energy management algorithm in hybrid microgrids was performed to evaluate the effects of using energy storage resources and their use in mitigating heavy load impacts on system stability and operational security.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objectifs: Examiner les tendances temporelles, les déterminants en lien avec le design des études et la qualité des taux de réponse rapportés dans des études cas-témoins sur le cancer publiées lors des 30 dernières années. Méthodes: Une revue des études cas-témoins sur le cancer a été menée. Les critères d'inclusion étaient la publication (i) dans l’un de 15 grands périodiques ciblés et (ii) lors de quatre périodes de publication (1984-1986, 1995, 2005 et 2013) couvrant trois décennies. 370 études ont été sélectionnées et examinées. La méthodologie en lien avec le recrutement des sujets et la collecte de données, les caractéristiques de la population, les taux de participation et les raisons de la non-participation ont été extraites de ces études. Des statistiques descriptives ont été utilisées pour résumer la qualité des taux de réponse rapportés (en fonction de la quantité d’information disponible), les tendances temporelles et les déterminants des taux de réponse; des modèles de régression linéaire ont été utilisés pour analyser les tendances temporelles et les déterminants des taux de participation. Résultats: Dans l'ensemble, les qualités des taux de réponse rapportés et des raisons de non-participation étaient très faible, particulièrement chez les témoins. La participation a diminué au cours des 30 dernières années, et cette baisse est plus marquée dans les études menées après 2000. Lorsque l'on compare les taux de réponse dans les études récentes a ceux des études menées au cours de 1971 à 1980, il y a une plus grande baisse chez les témoins sélectionnés en population générale ( -17,04%, IC 95%: -23,17%, -10,91%) que chez les cas (-5,99%, IC 95%: -11,50%, -0,48%). Les déterminants statistiquement significatifs du taux de réponse chez les cas étaient: le type de cancer examiné, la localisation géographique de la population de l'étude, et le mode de collecte des données. Le seul déterminant statistiquement significatif du taux de réponse chez les témoins hospitaliers était leur localisation géographique. Le seul déterminant statistiquement significatif du taux de participation chez les témoins sélectionnés en population générale était le type de répondant (sujet uniquement ou accompagné d’une tierce personne). Conclusion: Le taux de participation dans les études cas-témoins sur le cancer semble avoir diminué au cours des 30 dernières années et cette baisse serait plus marquée dans les études récentes. Afin d'évaluer le niveau réel de non-participation et ses déterminants, ainsi que l'impact de la non-participation sur la validité des études, il est nécessaire que les études publiées utilisent une approche normalisée pour calculer leurs taux de participation et qu’elles rapportent ceux-ci de façon transparente.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current knowledge revised in this article describes a wide range of facilities in common use on dairy cattle farms in warm climates. A dairy cattle farm consists of several facilities, such as housing system, yards, manure pits, milking center, environmental protection structures, forage storage, and several machines for different facilities. Any facility design tends to be a compromise, often between many factors, and no single solution will be optimal for all concerned.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Neonatal seizures are common in the neonatal intensive care unit. Clinicians treat these seizures with several anti-epileptic drugs (AEDs) to reduce seizures in a neonate. Current AEDs exhibit sub-optimal efficacy and several randomized control trials (RCT) of novel AEDs are planned. The aim of this study was to measure the influence of trial design on the required sample size of a RCT. We used seizure time courses from 41 term neonates with hypoxic ischaemic encephalopathy to build seizure treatment trial simulations. We used five outcome measures, three AED protocols, eight treatment delays from seizure onset (Td) and four levels of trial AED efficacy to simulate different RCTs. We performed power calculations for each RCT design and analysed the resultant sample size. We also assessed the rate of false positives, or placebo effect, in typical uncontrolled studies. We found that the false positive rate ranged from 5 to 85% of patients depending on RCT design. For controlled trials, the choice of outcome measure had the largest effect on sample size with median differences of 30.7 fold (IQR: 13.7–40.0) across a range of AED protocols, Td and trial AED efficacy (p<0.001). RCTs that compared the trial AED with positive controls required sample sizes with a median fold increase of 3.2 (IQR: 1.9–11.9; p<0.001). Delays in AED administration from seizure onset also increased the required sample size 2.1 fold (IQR: 1.7–2.9; p<0.001). Subgroup analysis showed that RCTs in neonates treated with hypothermia required a median fold increase in sample size of 2.6 (IQR: 2.4–3.0) compared to trials in normothermic neonates (p<0.001). These results show that RCT design has a profound influence on the required sample size. Trials that use a control group, appropriate outcome measure, and control for differences in Td between groups in analysis will be valid and minimise sample size.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The idea of spacecraft formations, flying in tight configurations with maximum baselines of a few hundred meters in low-Earth orbits, has generated widespread interest over the last several years. Nevertheless, controlling the movement of spacecraft in formation poses difficulties, such as in-orbit high-computing demand and collision avoidance capabilities, which escalate as the number of units in the formation is increased and complicated nonlinear effects are imposed to the dynamics, together with uncertainty which may arise from the lack of knowledge of system parameters. These requirements have led to the need of reliable linear and nonlinear controllers in terms of relative and absolute dynamics. The objective of this thesis is, therefore, to introduce new control methods to allow spacecraft in formation, with circular/elliptical reference orbits, to efficiently execute safe autonomous manoeuvres. These controllers distinguish from the bulk of literature in that they merge guidance laws never applied before to spacecraft formation flying and collision avoidance capacities into a single control strategy. For this purpose, three control schemes are presented: linear optimal regulation, linear optimal estimation and adaptive nonlinear control. In general terms, the proposed control approaches command the dynamical performance of one or several followers with respect to a leader to asymptotically track a time-varying nominal trajectory (TVNT), while the threat of collision between the followers is reduced by repelling accelerations obtained from the collision avoidance scheme during the periods of closest proximity. Linear optimal regulation is achieved through a Riccati-based tracking controller. Within this control strategy, the controller provides guidance and tracking toward a desired TVNT, optimizing fuel consumption by Riccati procedure using a non-infinite cost function defined in terms of the desired TVNT, while repelling accelerations generated from the CAS will ensure evasive actions between the elements of the formation. The relative dynamics model, suitable for circular and eccentric low-Earth reference orbits, is based on the Tschauner and Hempel equations, and includes a control input and a nonlinear term corresponding to the CAS repelling accelerations. Linear optimal estimation is built on the forward-in-time separation principle. This controller encompasses two stages: regulation and estimation. The first stage requires the design of a full state feedback controller using the state vector reconstructed by means of the estimator. The second stage requires the design of an additional dynamical system, the estimator, to obtain the states which cannot be measured in order to approximately reconstruct the full state vector. Then, the separation principle states that an observer built for a known input can also be used to estimate the state of the system and to generate the control input. This allows the design of the observer and the feedback independently, by exploiting the advantages of linear quadratic regulator theory, in order to estimate the states of a dynamical system with model and sensor uncertainty. The relative dynamics is described with the linear system used in the previous controller, with a control input and nonlinearities entering via the repelling accelerations from the CAS during collision avoidance events. Moreover, sensor uncertainty is added to the control process by considering carrier-phase differential GPS (CDGPS) velocity measurement error. An adaptive control law capable of delivering superior closed-loop performance when compared to the certainty-equivalence (CE) adaptive controllers is finally presented. A novel noncertainty-equivalence controller based on the Immersion and Invariance paradigm for close-manoeuvring spacecraft formation flying in both circular and elliptical low-Earth reference orbits is introduced. The proposed control scheme achieves stabilization by immersing the plant dynamics into a target dynamical system (or manifold) that captures the desired dynamical behaviour. They key feature of this methodology is the addition of a new term to the classical certainty-equivalence control approach that, in conjunction with the parameter update law, is designed to achieve adaptive stabilization. This parameter has the ultimate task of shaping the manifold into which the adaptive system is immersed. The performance of the controller is proven stable via a Lyapunov-based analysis and Barbalat’s lemma. In order to evaluate the design of the controllers, test cases based on the physical and orbital features of the Prototype Research Instruments and Space Mission Technology Advancement (PRISMA) are implemented, extending the number of elements in the formation into scenarios with reconfigurations and on-orbit position switching in elliptical low-Earth reference orbits. An extensive analysis and comparison of the performance of the controllers in terms of total Δv and fuel consumption, with and without the effects of the CAS, is presented. These results show that the three proposed controllers allow the followers to asymptotically track the desired nominal trajectory and, additionally, those simulations including CAS show an effective decrease of collision risk during the performance of the manoeuvre.