930 resultados para Optical-phonon


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Ba(1-x)Y(2x/3)](Zr(0.25)Ti(0.75))O(3) powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD). Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet-visible (UV-vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO(6)] clusters is able to change the interaction forces between the O-Ti-O and O-Zr-O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO(6)] clusters. The different optical band gap values estimated from UV-vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Films of amorphous aluminium nitride (AlN) were prepared by conventional radio frequency sputtering of an Al + Cr target in a plasma of pure nitrogen. The Cr-to-Al relative area determines the Cr content, which remained in the similar to 0-3.5 at% concentration range in this study. Film deposition was followed by thermal annealing of the samples up to 1050 degrees C in an atmosphere of oxygen and by spectroscopic characterization through energy dispersive x-ray spectrometry, photoluminescence and optical transmission measurements. According to the experimental results, the optical-electronic properties of the Cr-containing AlN films are highly influenced by both the Cr concentration and the temperature of the thermal treatments. In fact, thermal annealing at 1050 degrees C induces the development of structures that, because of their typical size and distinctive spectral characteristics, were designated by ruby microstructures (RbMSs). These RbMSs are surrounded by a N-rich environment in which Cr(3+) ions exhibit luminescent features not present in other Cr(3+)-containing systems such as ruby, emerald or alexandrite. The light emissions shown by the RbMSs and surroundings were investigated according to the Cr concentration and temperature of measurement, allowing the identification of several Cr(3+)-related luminescent lines. The main characteristics of these luminescent lines and corresponding excitation-recombination processes are presented and discussed in view of a detailed spectroscopic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluorescent AlPO(4) xerogels doped with different amounts of Rhodamine 6G (Rh6G) laser dye were prepared by a one-step sal-gel process. In addition, mesoporous AlPO(4) glasses obtained from undoped gels were loaded with different amounts of Rh6G by wet impregnation. Optical excitation and emission spectra of both series of samples show significant dependences on Rh6G concentration, revealing the influence of dye molecular aggregation. At comparable dye concentrations the aggregation effects are found to be significantly stronger in the gels than in the mesoporous glasses. This effect might be attributed to stronger interactions between the dye molecules and the glass matrix, resulting in more efficient dye dispersion in the latter. The interaction of Rh6G with the glassy AlPO(4) network has been probed by (27)Al and (31)P solid-state NMR techniques. New five- and six-coordinated aluminum environments have been observed and characterized by advanced solid-state NMR techniques probing (27)Al-(1)H and (27)Al-(31)P internuclear dipole couplings. The fractional area of these new Al sites is correlated with the combined fractional area of two new Q(3Al)((0)) and Q(2Al)((0)) phosphate species observed in the (31)P MAS NMR spectra. Based on this correlation as well as detailed composition dependent studies, we suggest that the new signals arise from the breakage of Al-O-P linkages associated with the insertion process. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presented here demonstrates the feasibility of using the single-mode fibers of an optical Internet network to deliver visible light between separate laboratories as a way to perform remote spectroscopy in the visible for teaching purposes. The coupling of a broadband light source into the single-mode fiber (SMF) and the characterization of optical losses as a function of the wavelength are discussed. Sample spectra were measured with a portable spectrometer controlled by an acquisition program developed with the LabVIEW software that allows the data to be collected and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with the existence and nonlinear stability of periodic travelling-wave solutions for a nonlinear Schrodinger-type system arising in nonlinear optics. We show the existence of smooth curves of periodic solutions depending on the dnoidal-type functions. We prove stability results by perturbations having the same minimal wavelength, and instability behaviour by perturbations of two or more times the minima period. We also establish global well posedness for our system by using Bourgain`s approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 mu s, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The addition of lithium salts to ionic liquids causes an increase in viscosity and a decrease in ionic mobility that hinders their possible application as an alternative solvent in lithium ion batteries. Optically heterodyne-detected optical Kerr effect spectroscopy was used to study the change in dynamics, principally orientational relaxation, caused by the addition of lithium bis(trifluoromethylsulfonyl)imide to the ionic liquid 1-buty1-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Over the time scales studied (1 ps-16 ns) for the pure ionic liquid, two temperature-independent power laws were observed: the intermediate power law (1 ps to similar to 1 ns), followed by the von Schweidler power law. The von Schweidler power law is followed by the final complete exponential relaxation, which is highly sensitive to temperature. The lithium salt concentration, however, was found to affect both power laws, and a discontinuity could be found in the trend observed for the intermediate power law when the concentration (mole fraction) of lithium salt is close to chi(LiTf(2)N) = 0.2. A mode coupling theory (MCT) schematic model was also used to fit the data for both the pure ionic liquid and the different salt concentration mixtures. It was found that dynamics in both types of liquids are described very well by MCT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Red, blue and green emitting rare earth compounds (RE(3+) = Eu(3+), Gd(3+) and Tb(3+)) containing the benzenetricarboxylate ligands (BTC) [hemimellitic (EMA), trimellitic (TLA) and trimesic (TMA)] were synthesized and characterized by elemental analysis, complexometric titration, X-ray diffraction patterns, thermogravimetric analysis and infrared spectroscopy. The complexes presented the following formula: [RE(EMA)(H(2)O)(2)], [RE(TLA)(H(2)O)(4)] and [RE(TMA)(H(2)O)(G)], except for Tb-TMA compound, which was obtained only as anhydrous. Phosphorescence data of Gd(3+)-(BTC) complexes showed that the triplet states (T) of the BTC(3-) anions have energy higher than the main emitting states of the Eu(3+) ((5)D(0)) and Tb(3+) ((5)D(4)), indicating that BTC ligands can act as intramolecular energy donors for these metal ions. The high values of experimental intensity parameters (Omega(2)) of Eu(3+)-(BTC) complexes indicate that the europium ion is in a highly polarizable chemical environment. Based on the luminescence spectra, the energy transfer from the T state of BTC ligands to the excited (5)D(0) and (5)D(4) levels of the Eu(3+) and Tb(3+) ions is discussed. The emission quantum efficiencies (eta) of the (5)D(0) emitting level of the Eu(3+) ion have been also determined. In the case of the Tb(3+) ion, the photoluminescence data show the high emission intensity of the characteristic transitions (5)D(4) -> (7)F(J) (J=0-6), indicating that the BTC ligands are good sensitizers. The RE(3+)-(BTC) complexes act as efficient light conversion molecular devices (LCMDs) and can be used as tricolor luminescent materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The details of the mechanism of persistent luminescence were probed by investigating the trap level structure of Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials (R: Y, La-Lu, excluding Pm and Eu) with thermoluminescence (TL) measurements and Density Functional Theory (DFT) calculations. The TL results indicated that the shallowest traps for each Sr(2)MgSi(2)O(7):Eu(2+),R(3+) material above room temperature were always ca. 0.7 eV corresponding to a strong TL maximum at ca. 90 A degrees C. This main trap energy was only slightly modified by the different co-dopants, which, in contrast, had a significant effect on the depths of the deeper traps. The combined results of the trap level energies obtained from the experimental data and DFT calculations suggest that the main trap responsible for the persistent luminescence of the Sr(2)MgSi(2)O(7):Eu(2+),R(3+) materials is created by charge compensation lattice defects, identified tentatively as oxygen vacancies, induced by the R(3+) co-dopants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work a method for the determination of Ca, Fe, Ga, Na, Si and Zn in alumina (Al(2)O(3)) by inductively coupled plasma optical emission spectrometry (ICP OES) with axial viewing is presented. Preliminary studies revealed intense aluminum spectral interference over the majority of elements and reaction between aluminum and quartz to form aluminosilicate, reducing drastically the lifetime of the torch. To overcome these problems alumina samples (250 mg) were dissolved with 5 mL HCl + 1.5 mLH(2)SO(4) + 1.5 mL H(2)O in a microwave oven. After complete dissolution the volume was completed to 20 mL and aluminum was precipitated as Al(OH)(3) with NH(3) (by bubbling NH(3) into the solution up to a pH similar to 8, for 10 min). The use of internal standards (Fe/Be, Ga/Dy, Zn/In and Na/Sc) was essential to obtain precise and accurate results. The reliability of the proposed method was checked by analysis of alumina certified reference material (Alumina Reduction Grade-699, NIST). The found concentrations (0.037%w(-1) CaO, 0.013% w w(-1) Fe(2)O(3), 0.012%w w(-1)Ga(2)O(3), 0.49% w w(-1) Na(2)O, 0.014% w w(-1) SiO(2) and 0.013% w w(-1) ZnO) presented no statistical differences compared to the certified values at a 95% confidence level. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles (AuNP) incorporated into hydrotalcite (HT), provide an interesting type of pigment in which temperature can modulate the plasmon resonance and the aggregation phenomenon. As inferred from microscopy techniques, the preferential binding sites are located at the border of the HT external basal surface, leading to aggregates of gold nanoparticles displaying characteristic plasmon resonance and interference bands around 520 and 700 nm, respectively. The thermally induced color changes in the HT-supported gold material arise from the competition between of nanoparticles aggregation and fusion processes, as characterized by TEM and STM. A laser beam can also induce such changes, allowing the writing of optical information on this type of material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the optical and electrical characterization of a poly(p-phenylenevinylene) derivative: poly(2-dodecanoylsulfanyl-p-phenylenevinylene) (12COS-PPV). The electrical characterization was carried out on devices with the FTO\PEDOT:PSS\12COS-PPV/Al structure. Positive charge carrier mobility mu(h) of similar to 1.0 x 10(-6) cm(2) V(-1) s(-1) and barrier height phi of similar to 0.1 eV for positive charge carrier injection at the PEDOT:PSS/12COS-PPV interface were obtained using a thermionic injection model. FTO\PEDOT:P55\12COS-PPV/Ca devices exhibited green-yellow electroluminescence with maximum emission at lambda = 540 nm.