830 resultados para Ocular biometry
Resumo:
Amoungst the three spiny lobster species in southern Iranian waters, Panulirus homarus is the only commercial species with a total landings of 20-45 tons per year indicating a decrease in both landings and CPIJE in recent years. Fishing has been regulated according to the no. of fisherman and effort, and trap ha's replaced the gillnef since 1994. Fishing is carried out along the rocky shores of Chah-Bahar region through different landing places by local fisherman for a period of about two months. Most of catch is exported mainly frozen. This research was sposored by the Fisheries Research Dept. and aimed to work on the population dynamics and stock assessment in order to stablish a better understandings of the stock and hence a proper management in this region. Sampling was done for. 10 successive months in _5 major landing places from 1994 to 1995 with no sampling during the monsoon period through June to July. Althogethere, 8500 specimen were collected and the biometry was done accordings to the sex, region and month. Average total length, total weight and carapace length was obtained 216mm., 452 gr. and 75mm. respectively. Total length-weight relationship of both sexes was calculated and follows the cubic law. Regression coefficients for both sexes was 2.8231, males 2.9616, total females 2.7490, berried females 2.6611- and non-berried females
Resumo:
Testate amoebae are an important and abundant component of aquatic ecosystems. Our knowledge of their distribution and the species inventory in Asia is still limited. This paper describes a new planktonic Difflugia from Lake Mulan, province of Hubei, China. These findings are of taxonomic, as well as biogeographic significance because Difflugia mulanensis nov. spec. is a rare and perhaps the only locally distributed member of the well-known urceolate division within this most species-rich genus of lobose testate amoebae. We have studied its morphology and biometry with light and scanning electron microscopical methods. D. mulanensis differs from related species by its very large wide funnel-shaped apertural collar which normally exceeds the width of the test, a relatively long neck, its rounded apical end and the presence of only one nucleus. All shell parameters are normally distributed with low variability. Only the collar height is more variable. This shows that D. mulanensis is a size-monomorphic species. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
The freshwater testate amoeba Difflugia tuberspinifera Hu et al. 1997 collected from pond and lake in China, is investigated by light and scanning electron microscopy. This little known taxon is redescribed and its morphology, biometry and ecology are supplied. After carefully comparison with other six similar species including Difflugia bartosi Stepanek, D. corona Wallich, D. corona cashi Deflandre, D. corona tuberculata Vucetich, D. muriformis Gauthier-Lievre et Thomas and Netzelia tuberculata (Wallich) Netzal we believe that the sub-spherical to spherical shell, the mulberry-shaped appearance, the 7-10 apertural tooth-like structures, the short collar and the conical spines numbering from 4 to 8 at the upper equatorial region in D. tuberspinifera set it apart from other species. Besides, statistical analysis indicates that D. tuberspinifera is a size-monomorphic species characterized by a main-size class and a small size range and the shell height is significant correlated with other morphometric characters at p < 0.05 excepting the number of aperture tooth-like structures and the number of spines. Moreover, D. tuberspinifera inhabits not only lotic but also lentic environment.
Resumo:
大气中CO2、CH4和其它温室气体浓度升高导致的全球气候变化引起了人们对全球碳循环和碳收支的关注,植被与大气间CO2通量的长期测定能够加深对陆地生态系统在全球碳循环作用的科学理解。本文以我国北方典型的温带植被类型长白山阔叶红松林为研究对象,利用观测塔上的涡动相关系统对长白山阔仆卜红松林进行长期的CO2通量监测,并分析CO2通量的周年动态,估算森林净生态系统生产力;同时基于测树学方法,进行群落调查,根据已有的经验公式,估算森林净生态系统生产力,综合评价长白山阔汗卜红松林碳收支,为森林碳收支的研究提供基础。主要结论有:(1)FSAM模型的分析结果表明,观测塔上40m高度的涡动相关仪器测量的信息中,76%来自于西北至西南方相对均质的阔叶红松原始林,其中footprint最大的源区在塔西南方100m-400m范围内。因此,森林群落调查选择在此区内进行,使得涡动相关法和测树学方法估算的生产力具有可比性。(2)2003-2004年碳通量季节变化趋势基本一致,从年初到4月上旬该森林生态系统保持较弱的正的碳通量(释放CO2),5月开始表现为净的碳吸收,且吸收量迅速增加,到6月达到最大值,然后又逐渐减小;9月末到10月末随着生长季的结束,净生态系统COZ交换(NEE)开始由负转为正,11-12月NEE为正,生态系统以呼吸为主。净生态系统COZ交换的年累计量表明长白山阔叶红松林为明显的碳汇,2003年和2004年净生态系统生产力NEP分别为-217±75gcm-2a-1和-190±85gcm-2a-1,相当于-2.17±0.75tCha-1a-1和-1.90±0.85tCha-1a-1。(3)根据经验公式和材积法得到阔汗卜红松林的生物量在343.9-362.3tha-l之间,应用两种方法得到2003一2004年群落的净初级生产力在10.22-10.40tCha-1a-1之间,净生态系统生产力在2.50±1.12tCha-1a-1-2.68±1.20tCha-1a-1之间。(4)测树学方法与涡动相关法测得的净生态系统生产力略有差异,但在误差有效范围内基本一致。
Resumo:
Purpose: To evaluate the clinical and radiologic response of patients with Graves' ophthalmopathy given low-dose orbital radiotherapy (RT) with a protracted fractionation.Methods and Materials: Eighteen patients (36 orbits) received orbital RT with a total dose of 10 Gy, fractionated in 1 Gy once a week over 10 weeks. of these, 9 patients received steroid therapy as well. Patients were evaluated clinically and radiologically at 6 months after treatment. Clinical response assessment was carried out using three criteria: by physical examination, by a modified clinical activity score, and by a verbal questionnaire considering the 10 most common signs and symptoms of the disease. Radiologic response was assessed by magnetic resonance imaging.Results: Improvement in ocular pain, palpebral edema, visual acuity, and ocular motility was observed in all patients. Significant decrease in symptoms such as tearing (p < 0.001) diplopia (p = 0.008), conjunctival hyperemia (p = 0.002), and ocular grittiness (p = 0.031) also occurred. Magnetic resonance imaging showed decrease in ocular muscle thickness and in the intensity of the T2 sequence signal in the majority of patients. Treatments were well tolerated, and to date no complications from treatment have been observed. There was no statistical difference in clinical and radiologic response between patients receiving RT alone and those receiving RT plus steroid therapy.Conclusion: RT delivered in at a low dose and in a protracted scheme should be considered as a useful therapeutic option for patients with Graves' ophthalmopathy. (C) 2012 Elsevier Inc.
Resumo:
This thesis investigates the extent and range of the ocular vocabulary and themes employed by the playwright Thomas Middleton in context with early modern scientific, medical, and moral-philosophical writing on vision. More specifically, this thesis concerns Middleton’s revelation of the substance or essence of outward forms through mimesis. This paradoxical stance implies Middleton’s use of an illusory (theatrical) art form to explore hidden truths. This can be related to the early modern belief in the imagination (or fantasy) as chief mediator between the corporeal and spiritual worlds as well as to a reformed belief in the power of signs to indicate divine truth. This thesis identifies striking parallels between Middleton’s policy of social diagnosis and cure and an increased preoccupation with knowledge of interior man which culminates in Robert Burton’s Anatomy of Melancholy of 1621. All of these texts seek a cure for diseased internal sense faculties (such as fantasy and will) which cause the raging passions to destroy the individual. The purpose of this thesis is to demonstrate how Middleton takes a similar ‘mental-medicinal’ approach which investigates the idols created by the imagination before ‘purging’ the same and restoring order (Corneanu and Vermeir 184). The idea of infection incurred through the eyes which are fixed on vice (or error) has moral, religious, and political implications and discovery of corruption involves stripping away the illusions of false appearances to reveal the truth within whereby disease and disorder can be cured and restored. Finally, Middleton’s use of theatrical fantasy to detect the idols of the diseased imagination can be read as a Paracelsian, rather than Galenic, form of medicine whereby like is ‘joined with their like’ (Bostocke C7r) to restore health.
Resumo:
Recent evidence that echinoids of the genus Echinometra have moderate visual acuity that appears to be mediated by their spines screening off-axis light suggests that the urchin Strongylocentrotus purpuratus, with its higher spine density, may have even more acute spatial vision. We analyzed the movements of 39 specimens of S. purpuratus after they were placed in the center of a featureless tank containing a round, black target that had an angular diameter of 6.5 deg. or 10 deg. (solid angles of 0.01 sr and 0.024 sr, respectively). An average orientation vector for each urchin was determined by testing the animal four times, with the target placed successively at bearings of 0 deg., 90 deg., 180 deg. and 270 deg. (relative to magnetic east). The urchins showed no significant unimodal or axial orientation relative to any non-target feature of the environment or relative to the changing position of the 6.5 deg. target. However, the urchins were strongly axially oriented relative to the changing position of the 10 deg. target (mean axis from -1 to 179 deg.; 95% confidence interval +/- 12 deg.; P<0.001, Moore's non-parametric Hotelling's test), with 10 of the 20 urchins tested against that target choosing an average bearing within 10 deg. of either the target center or its opposite direction (two would be expected by chance). In addition, the average length of the 20 target-normalized bearings for the 10 deg. target (each the vector sum of the bearings for the four trials) were far higher than would be expected by chance (P<10(-10); Monte Carlo simulation), showing that each urchin, whether it moved towards or away from the target, did so with high consistency. These results strongly suggest that S. purpuratus detected the 10 deg. target, responding either by approaching it or fleeing it. Given that the urchins did not appear to respond to the 6.5 deg. target, it is likely that the 10 deg. target was close to the minimum detectable size for this species. Interestingly, measurements of the spine density of the regions of the test that faced horizontally predicted a similar visual resolution (8.3+/-0.5 deg. for the interambulacrum and 11+/-0.54 deg. for the ambulacrum). The function of this relatively low, but functional, acuity - on par with that of the chambered Nautilus and the horseshoe crab - is unclear but, given the bimodal response, is likely to be related to both shelter seeking and predator avoidance.
Resumo:
Segmentation of anatomical and pathological structures in ophthalmic images is crucial for the diagnosis and study of ocular diseases. However, manual segmentation is often a time-consuming and subjective process. This paper presents an automatic approach for segmenting retinal layers in Spectral Domain Optical Coherence Tomography images using graph theory and dynamic programming. Results show that this method accurately segments eight retinal layer boundaries in normal adult eyes more closely to an expert grader as compared to a second expert grader.
Resumo:
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
Resumo:
BACKGROUND: Small laboratory fish share many anatomical and histological characteristics with other vertebrates, yet can be maintained in large numbers at low cost for lifetime studies. Here we characterize biomarkers associated with normal aging in the Japanese medaka (Oryzias latipes), a species that has been widely used in toxicology studies and has potential utility as a model organism for experimental aging research. PRINCIPAL FINDINGS: The median lifespan of medaka was approximately 22 months under laboratory conditions. We performed quantitative histological analysis of tissues from age-grouped individuals representing young adults (6 months old), mature adults (16 months old), and adults that had survived beyond the median lifespan (24 months). Livers of 24-month old individuals showed extensive morphologic changes, including spongiosis hepatis, steatosis, ballooning degeneration, inflammation, and nuclear pyknosis. There were also phagolysosomes, vacuoles, and residual bodies in parenchymal cells and congestion of sinusoidal vessels. Livers of aged individuals were characterized by increases in lipofuscin deposits and in the number of TUNEL-positive apoptotic cells. Some of these degenerative characteristics were seen, to a lesser extent, in the livers of 16-month old individuals, but not in 6-month old individuals. The basal layer of the dermis showed an age-dependent decline in the number of dividing cells and an increase in senescence-associated β-galactosidase. The hearts of aged individuals were characterized by fibrosis and lipofuscin deposition. There was also a loss of pigmented cells from the retinal epithelium. By contrast, age-associated changes were not apparent in skeletal muscle, the ocular lens, or the brain. SIGNIFICANCE: The results provide a set of markers that can be used to trace the process of normal tissue aging in medaka and to evaluate the effect of environmental stressors.
Resumo:
PURPOSE: To develop a mathematical model that can predict refractive changes after Descemet stripping endothelial keratoplasty (DSEK). METHODS: A mathematical formula based on the Gullstrand eye model was generated to estimate the change in refractive power of the eye after DSEK. This model was applied to four DSEK cases retrospectively, to compare measured and predicted refractive changes after DSEK. RESULTS: The refractive change after DSEK is determined by calculating the difference in the power of the eye before and after DSEK surgery. The power of the eye post-DSEK surgery can be calculated with modified Gullstrand eye model equations that incorporate the change in the posterior radius of curvature and change in the distance between the principal planes of the cornea and lens after DSEK. Analysis of this model suggests that the ratio of central to peripheral graft thickness (CP ratio) and central thickness can have significant effect on refractive change where smaller CP ratios and larger graft thicknesses result in larger hyperopic shifts. This model was applied to four patients, and the average predicted hyperopic shift in the overall power of the eye was calculated to be 0.83 D. This change reflected in a mean of 93% (range, 75%-110%) of patients' measured refractive shifts. CONCLUSIONS: This simplified DSEK mathematical model can be used as a first step for estimating the hyperopic shift after DSEK. Further studies are necessary to refine the validity of this model.
Resumo:
Ecosystems are being altered on a global scale by the extirpation of top predators. The ecological effects of predator removal have been investigated widely; however, predator removal can also change natural selection acting on prey, resulting in contemporary evolution. Here we tested the role of predator removal on the contemporary evolution of trophic traits in prey. We utilized a historical introduction experiment where Trinidadian guppies (Poecilia reticulata) were relocated from a site with predatory fishes to a site lacking predators. To assess the trophic consequences of predator release, we linked individual morphology (cranial, jaw, and body) to foraging performance. Our results show that predator release caused an increase in guppy density and a "sharpening" of guppy trophic traits, which enhanced food consumption rates. Predator release appears to have shifted natural selection away from predator escape ability and towards resource acquisition ability. Related diet and mesocosm studies suggest that this shift enhances the impact of guppies on lower trophic levels in a fashion nuanced by the omnivorous feeding ecology of the species. We conclude that extirpation of top predators may commonly select for enhanced feeding performance in prey, with important cascading consequences for communities and ecosystems.
Resumo:
Using functional magnetic resonance imaging (fMRI), we investigated brain activity evoked by mutual and averted gaze in a compelling and commonly experienced social encounter. Through virtual-reality goggles, subjects viewed a man who walked toward them and shifted his neutral gaze either toward (mutual gaze) or away (averted gaze) from them. Robust activity was evoked in the superior temporal sulcus (STS) and fusiform gyrus (FFG). For both conditions, STS activity was strongly right lateralized. Mutual gaze evoked greater activity in the STS than did averted gaze, whereas the FFG responded equivalently to mutual and averted gaze. Thus, we show that the STS is involved in processing social information conveyed by shifts in gaze within an overtly social context. This study extends understanding of the role of the STS in social cognition and social perception by demonstrating that it is highly sensitive to the context in which a human action occurs.
Resumo:
Small bistratified cells (SBCs) in the primate retina carry a major blue-yellow opponent signal to the brain. We found that SBCs also carry signals from rod photoreceptors, with the same sign as S cone input. SBCs exhibited robust responses under low scotopic conditions. Physiological and anatomical experiments indicated that this rod input arose from the AII amacrine cell-mediated rod pathway. Rod and cone signals were both present in SBCs at mesopic light levels. These findings have three implications. First, more retinal circuits may multiplex rod and cone signals than were previously thought to, efficiently exploiting the limited number of optic nerve fibers. Second, signals from AII amacrine cells may diverge to most or all of the approximately 20 retinal ganglion cell types in the peripheral primate retina. Third, rod input to SBCs may be the substrate for behavioral biases toward perception of blue at mesopic light levels.
Resumo:
The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.