977 resultados para Oceanic mythology.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A terrestrial biosphere model with dynamic vegetation capability, Integrated Biosphere Simulator (IBIS2), coupled to the NCAR Community Atmosphere Model (CAM2) is used to investigate the multiple climate-forest equilibrium states of the climate system. A 1000-year control simulation and another 1000-year land cover change simulation that consisted of global deforestation for 100 years followed by re-growth of forests for the subsequent 900 years were performed. After several centuries of interactive climate-vegetation dynamics, the land cover change simulation converged to essentially the same climate state as the control simulation. However, the climate system takes about a millennium to reach the control forest state. In the absence of deep ocean feedbacks in our model, the millennial time scale for converging to the original climate state is dictated by long time scales of the vegetation dynamics in the northern high latitudes. Our idealized modeling study suggests that the equilibrium state reached after complete global deforestation followed by re-growth of forests is unlikely to be distinguishable from the control climate. The real world, however, could have multiple climate-forest states since our modeling study is unlikely to have represented all the essential ecological processes (e. g. altered fire regimes, seed sources and seedling establishment dynamics) for the reestablishment of major biomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systematic observations of light detection and ranging (LIDAR) to detect elevated aerosol layer were carried out at Manora Peak (29.4 degrees N, 79.5 degrees E, similar to 1960 m a.s.l), Nainital, in the Central Himalayas during January-May 2008. In spite of being a remote, high-altitude site, an elevated aerosol layer is observed quite frequently in the altitude range of 2460-4460 m a.s.l with a width of similar to 2 km during the observation period. We compare these profiles with the vertical profiles observed over Gadanki (13.5 degrees N, 79.2 degrees E, similar to 370 m a.s.l), a tropical station, where no such elevated aerosol layer was found. Further, there is a steady increase in aerosol optical depth (AOD) from January (winter) to May (summer) from 0.043 to 0.742, respectively, at Manora Peak, indicating aerosol loading in the atmosphere. Our observations show north-westerly winds indicating the convective lifting of aerosols from far-off regions followed by horizontal long-range transport. The presence of strongly absorbing and scattering aerosols in the elevated layer resulted in a relatively large diurnal mean aerosol surface radiative forcing efficiency (forcing per unit optical depth) of about -65 and -63 W m(-2) and the corresponding mean reduction in the observed net solar flux at the surface (cooling effect) is as high as -22 and -30 W m(-2). The reduction of radiation will heat the lower atmosphere by redistributing the radiation with heating rate of 1.13 and 1.31 K day(-1) for April and May 2008, respectively, in the lower atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variable resolution global spectral method is created on the sphere using High resolution Tropical Belt Transformation (HTBT). HTBT belongs to a class of map called reparametrisation maps. HTBT parametrisation of the sphere generates a clustering of points in the entire tropical belt; the density of the grid point distribution decreases smoothly in the domain outside the tropics. This variable resolution method creates finer resolution in the tropics and coarser resolution at the poles. The use of FFT procedure and Gaussian quadrature for the spectral computations retains the numerical efficiency available with the standard global spectral method. Accuracy of the method for meteorological computations are demonstrated by solving Helmholtz equation and non-divergent barotropic vorticity equation on the sphere. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian region. I present a review of the current state of knowledge of aerosol chemistry in India and propose future directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as ``regressed'' radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moist stratified turbulence is studied in a two-dimensional Boussinesq system influenced by condensation and evaporation. The problem is set in a periodic domain and employs simple evaporation and condensation schemes, wherein both the processes push parcels towards saturation. Numerical simulations demonstrate the emergence of a moist turbulent state consisting of ordered structures with a clear power-law type spectral scaling from initially spatially uncorrelated conditions. An asymptotic analysis in the limit of rapid condensation and strong stratification shows that, for initial conditions with enough water substance to saturate the domain, the equations support a straightforward state of moist balance characterized by a hydrostatic, saturated, vertically sheared horizontal flow (VSHF). For such initial conditions, by means of long time numerical simulations, the emergence of moist balance is verified. Specifically, starting from uncorrelated data, subsequent to the development of a moist turbulent state, the system experiences a rather abrupt transition to a regime which is close to saturation and dominated by a strong VSHF. On the other hand, initial conditions which do not have enough water substance to saturate the domain, do not attain moist balance. Rather, the system is observed to remain in a turbulent state and oscillates about moist balance. Even though balance is not achieved with these general initial conditions, the time scale of oscillation about moist balance is much larger than the imposed time scale of condensation and evaporation, thus indicating a distinct dominant slow component in the moist stratified two-dimensional turbulent system. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694805]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solar radiation flux at the earth's surface has gone through decadal changes of decreasing and increasing trends over the globe. These phenomena known as dimming and brightening, respectively, have attracted the scientific interest in relation to the changes in radiative balance and climate. Despite the interest in the solar dimming/brightening phenomenon in various parts of the world, south Asia has not attracted great scientific attention so far. The present work uses the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004. From the analysis it is seen that solar dimming continues over south Asia with a trend of -0.54 Wm(-2) yr(-1). Assuming clear skies an average decrease of -0.05 Wm(-2)yr(-1) in NDSWR was observed, which is attributed to increased aerosol emissions over the region. There is evidence that the increase in cloud optical depth plays the major role for the solar dimming over the area. The cloud optical depth (MERRA retrievals) has increased by 10.7% during the study period, with the largest increase to be detected for the high-level (atmospheric pressure P < 400 hPa) clouds (31.2%). Nevertheless, the decrease in solar radiation and the role of aerosols and clouds exhibit large monthly and seasonal variations directly affected by the local monsoon system, the anthropogenic and natural aerosol emissions. All these aspects are examined in detail aiming at shedding light into the solar dimming phenomenon over a densely populated area. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The simulation characteristics of the Asian-Australian monsoon are documented for the Community Climate System Model, version 4 (CCSM4). This is the first part of a two part series examining monsoon regimes in the global tropics in the CCSM4. Comparisons are made to an Atmospheric Model Intercomparison Project (AMIP) simulation of the atmospheric component in CCSM4 Community Atmosphere Model, version 4, (CAM4)] to deduce differences in the monsoon simulations run with observed sea surface temperatures (SSTs) and with ocean-atmosphere coupling. These simulations are also compared to a previous version of the model (CCSM3) to evaluate progress. In general, monsoon rainfall is too heavy in the uncoupled AMIP run with CAM4, and monsoon rainfall amounts are generally better simulated with ocean coupling in CCSM4. Most aspects of the Asian-Australian monsoon simulations are improved in CCSM4 compared to CCSM3. There is a reduction of the systematic error of rainfall over the tropical Indian Ocean for the South Asian monsoon, and well-simulated connections between SSTs in the Bay of Bengal and regional South Asian monsoon precipitation. The pattern of rainfall in the Australian monsoon is closer to observations in part because of contributions from the improvements of the Indonesian Throughflow and diapycnal diffusion in CCSM4. Intraseasonal variability of the Asian-Australian monsoon is much improved in CCSM4 compared to CCSM3 both in terms of eastward and northward propagation characteristics, though it is still somewhat weaker than observed. An improved simulation of El Nino in CCSM4 contributes to more realistic connections between the Asian-Australian monsoon and El Nino-Southern Oscillation (ENSO), though there is considerable decadal and century time scale variability of the strength of the monsoon-ENSO connection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During summer, the northern Indian Ocean exhibits significant atmospheric intraseasonal variability associated with active and break phases of the monsoon in the 30-90 days band. In this paper, we investigate mechanisms of the Sea Surface Temperature (SST) signature of this atmospheric variability, using a combination of observational datasets and Ocean General Circulation Model sensitivity experiments. In addition to the previously-reported intraseasonal SST signature in the Bay of Bengal, observations show clear SST signals in the Arabian Sea related to the active/break cycle of the monsoon. As the atmospheric intraseasonal oscillation moves northward, SST variations appear first at the southern tip of India (day 0), then in the Somali upwelling region (day 10), northern Bay of Bengal (day 19) and finally in the Oman upwelling region (day 23). The Bay of Bengal and Oman signals are most clearly associated with the monsoon active/break index, whereas the relationship with signals near Somali upwelling and the southern tip of India is weaker. In agreement with previous studies, we find that heat flux variations drive most of the intraseasonal SST variability in the Bay of Bengal, both in our model (regression coefficient, 0.9, against similar to 0.25 for wind stress) and in observations (0.8 regression coefficient); similar to 60% of the heat flux variation is due do shortwave radiation and similar to 40% due to latent heat flux. On the other hand, both observations and model results indicate a prominent role of dynamical oceanic processes in the Arabian Sea. Wind-stress variations force about 70-100% of SST intraseasonal variations in the Arabian Sea, through modulation of oceanic processes (entrainment, mixing, Ekman pumping, lateral advection). Our similar to 100 km resolution model suggests that internal oceanic variability (i.e. eddies) contributes substantially to intraseasonal variability at small-scale in the Somali upwelling region, but does not contribute to large-scale intraseasonal SST variability due to its small spatial scale and random phase relation to the active-break monsoon cycle. The effect of oceanic eddies; however, remains to be explored at a higher spatial resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabian Sea Mini Warm Pool (ASMWP) is a part of the Indian Ocean Warm Pool and formed in the eastern Arabian Sea prior to the onset of the summer monsoon season. This warm pool attained its maximum intensity during the pre-monsoon season and dissipated with the commencement of summer monsoon. The main focus of the present work was on the triggering of the dissipation of this warm pool and its relation to the onset of summer monsoon over Kerala. This phenomenon was studied utilizing NCEP/NCAR (National Center for Environmental Prediction/National Center for Atmospheric and Research) re-analysis data, TRMM Micro wave Imager (TMI) and observational data. To define the ASMWP, sea surface temperature exceeding 30.25A degrees C was taken as the criteria. The warm pool attained its maximum dimension and intensity nearly 2 weeks prior to the onset of summer monsoon over Kerala. Interestingly, the warm pool started its dissipation immediately after attaining its maximum core temperature. This information can be included in the present numerical models to enhance the prediction capability. It was also found that the extent and intensity of the ASMWP varied depending on the type of monsoon i.e., excess, normal, and deficient monsoon. Maximum core temperature and wide coverage of the warm pool observed during the excess monsoon years compared to normal and deficient monsoon years. The study also revealed a strong relationship between the salinity in the eastern Arabian Sea and the nature of the monsoon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June-September), with a peak during July-August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse rain-gauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

South peninsular India experiences a large portion of the annual rainfall during the northeast monsoon season (October to December). In this study, the facets of diurnal, intra-seasonal and inter-annual variability of the northeast monsoon rainfall (the NEMR) over India have been examined. The analysis of satellite derived hourly rainfall reveals that there are distinct features of diurnal variation over the land and oceans during the season. Over the land, rainfall peaks during the late afternoon/evening, while over the oceans an early morning peak is observed. The harmonic analysis of hourly data reveals that the amplitude and variance are the largest over south peninsular India. The NEMR also exhibits significant intra-seasonal variability on a 20-40 day time scale. Analysis also shows significant northward propagation of the maximum cloud zone from south of equator to the south peninsula during the season. The NEMR exhibits large inter-annual variability with the co-efficient of variation (CV) of 25%. The positive phases of ENSO and the Indian Ocean Dipole (IOD) are conducive for normal to above normal rainfall activity during the northeast monsoon. There are multi-decadal variations in the statistical relationship between ENSO and the NEMR. During the period 2001-2010 the statistical relationship between ENSO and the NEMR has significantly weakened. The analysis of seasonal rainfall hindcasts for the period 1960-2005 produced by the state-of-the-art coupled climate models, ENSEMBLES, reveals that the coupled models have very poor skill in predicting the inter-annual variability of the NEMR. This is mainly due to the inability of the ENSEMBLES models to simulate the positive relationship between ENSO and the NEMR correctly. Copyright (C) 2012 Royal Meteorological Society

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The failure of atmospheric general circulation models (AGCMs) forced by prescribed SST to simulate and predict the interannual variability of Indian/Asian monsoon has been widely attributed to their inability to reproduce the actual sea surface temperature (SST)-rainfall relationship in the warm Indo-Pacific oceans. This assessment is based on a comparison of the observed and simulated correlation between the rainfall and local SST. However, the observed SSTconvection/rainfall relationship is nonlinear and for this a linear measure such as the correlation is not an appropriate measure. We show that the SST-rainfall relationship simulated by atmospheric and coupled general circulation models in IPCC AR4 is nonlinear, as observed, and realistic over the tropical West Pacific (WPO) and the Indian Ocean (IO). The SST-rainfall pattern simulated by the coupled versions of these models is rather similar to that from the corresponding atmospheric one, except for a shift of the entire pattern to colder/warmer SSTs when there is a cold/warm bias in the coupled version.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computational grids with multiple batch systems (batch grids) can be powerful infrastructures for executing long-running multi-component parallel applications. In this paper, we evaluate the potential improvements in throughput of long-running multi-component applications when the different components of the applications are executed on multiple batch systems of batch grids. We compare the multiple batch executions with executions of the components on a single batch system without increasing the number of processors used for executions. We perform our analysis with a foremost long-running multi-component application for climate modeling, the Community Climate System Model (CCSM). We have built a robust simulator that models the characteristics of both the multi-component application and the batch systems. By conducting large number of simulations with different workload characteristics and queuing policies of the systems, processor allocations to components of the application, distributions of the components to the batch systems and inter-cluster bandwidths, we show that multiple batch executions lead to 55% average increase in throughput over single batch executions for long-running CCSM. We also conducted real experiments with a practical middleware infrastructure and showed that multi-site executions lead to effective utilization of batch systems for executions of CCSM and give higher simulation throughput than single-site executions. Copyright (c) 2011 John Wiley & Sons, Ltd.