940 resultados para ONE-DIMENSIONAL SYSTEMS
Resumo:
Urbanization, the expansion of built-up areas, is an important yet less-studied aspect of land use/land cover change in climate science. To date, most global climate models used to evaluate effects of land use/land cover change on climate do not include an urban parameterization. Here, the authors describe the formulation and evaluation of a parameterization of urban areas that is incorporated into the Community Land Model, the land surface component of the Community Climate System Model. The model is designed to be simple enough to be compatible with structural and computational constraints of a land surface model coupled to a global climate model yet complex enough to explore physically based processes known to be important in determining urban climatology. The city representation is based upon the “urban canyon” concept, which consists of roofs, sunlit and shaded walls, and canyon floor. The canyon floor is divided into pervious (e.g., residential lawns, parks) and impervious (e.g., roads, parking lots, sidewalks) fractions. Trapping of longwave radiation by canyon surfaces and solar radiation absorption and reflection is determined by accounting for multiple reflections. Separate energy balances and surface temperatures are determined for each canyon facet. A one-dimensional heat conduction equation is solved numerically for a 10-layer column to determine conduction fluxes into and out of canyon surfaces. Model performance is evaluated against measured fluxes and temperatures from two urban sites. Results indicate the model does a reasonable job of simulating the energy balance of cities.
Resumo:
A mathematical model describing the heat budget of an irradiated medium is introduced. The one-dimensional form of the equations and boundary conditions are presented and analysed. Heat transport at one face of the slab occurs by absorption (and reflection) of an incoming beam of short-wave radiation with a fraction of this radiation penetrating into the body of the slab, a diffusive heat flux in the slab and a prescribed incoming heat flux term. The other face of the slab is immersed in its own melt and is considered to be a free surface. Here, temperature continuity is prescribed and evolution of the surface is determined by a Stefan condition. These boundary conditions are flexible enough to describe a range of situations such as a laser shining on an opaque medium, or the natural environment of polar sea ice or lake ice. A two-stream radiation model is used which replaces the simple Beer’s law of radiation attenuation frequently used for semi-infinite domains. The stationary solutions of the governing equations are sought and it is found that there exists two possible stationary solutions for a given set of boundary conditions and a range of parameter choices. It is found that the existence of two stationary solutions is a direct result of the model of radiation absorption, due to its effect on the albedo of the medium. A linear stability analysis and numerical calculations indicate that where two stationary solutions exist, the solution corresponding to a larger thickness is always stable and the solution corresponding to a smaller thickness is unstable. Numerical simulations reveal that when there are two solutions, if the slab is thinner than the smaller stationary thickness it will melt completely, whereas if the slab is thicker than the smaller stationary thickness it will evolve toward the larger stationary thickness. These results indicate that other mechanisms (e.g. wave-induced agglomeration of crystals) are necessary to grow a slab from zero initial thickness in the parameter regime that yields two stationary solutions.
Resumo:
A one-dimensional, thermodynamic, and radiative model of a melt pond on sea ice is presented that explicitly treats the melt pond as an extra phase. A two-stream radiation model, which allows albedo to be determined from bulk optical properties, and a parameterization of the summertime evolution of optical properties, is used. Heat transport within the sea ice is described using an equation describing heat transport in a mushy layer of a binary alloy (salt water). The model is tested by comparison of numerical simulations with SHEBA data and previous modeling. The presence of melt ponds on the sea ice surface is demonstrated to have a significant effect on the heat and mass balance. Sensitivity tests indicate that the maximum melt pond depth is highly sensitive to optical parameters and drainage. INDEX TERMS: 4207 Oceanography: General: Arctic and Antarctic oceanography; 4255 Oceanography: General: Numerical modeling; 4299 Oceanography: General: General or miscellaneous; KEYWORDS: sea ice, melt pond, albedo, Arctic Ocean, radiation model, thermodynamic
Resumo:
Particle filters are fully non-linear data assimilation techniques that aim to represent the probability distribution of the model state given the observations (the posterior) by a number of particles. In high-dimensional geophysical applications the number of particles required by the sequential importance resampling (SIR) particle filter in order to capture the high probability region of the posterior, is too large to make them usable. However particle filters can be formulated using proposal densities, which gives greater freedom in how particles are sampled and allows for a much smaller number of particles. Here a particle filter is presented which uses the proposal density to ensure that all particles end up in the high probability region of the posterior probability density function. This gives rise to the possibility of non-linear data assimilation in large dimensional systems. The particle filter formulation is compared to the optimal proposal density particle filter and the implicit particle filter, both of which also utilise a proposal density. We show that when observations are available every time step, both schemes will be degenerate when the number of independent observations is large, unlike the new scheme. The sensitivity of the new scheme to its parameter values is explored theoretically and demonstrated using the Lorenz (1963) model.
Resumo:
The problem of heat conduction in one-dimensional piecewise homogeneous composite materials is examined by providing an explicit solution of the one-dimensional heat equation in each domain. The location of the interfaces is known, but neither temperature nor heat flux are prescribed there. Instead, the physical assumptions of their continuity at the interfaces are the only conditions imposed. The problem of two semi-infinite domains and that of two finite-sized domains are examined in detail. We indicate also how to extend the solution method to the setting of one finite-sized domain surrounded on both sides by semi-infinite domains, and on that of three finite-sized domains.
Resumo:
A class identification algorithms is introduced for Gaussian process(GP)models.The fundamental approach is to propose a new kernel function which leads to a covariance matrix with low rank,a property that is consequently exploited for computational efficiency for both model parameter estimation and model predictions.The objective of either maximizing the marginal likelihood or the Kullback–Leibler (K–L) divergence between the estimated output probability density function(pdf)and the true pdf has been used as respective cost functions.For each cost function,an efficient coordinate descent algorithm is proposed to estimate the kernel parameters using a one dimensional derivative free search, and noise variance using a fast gradient descent algorithm. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
Resumo:
Motivated by the motion planning problem for oriented vehicles travelling in a 3-Dimensional space; Euclidean space E3, the sphere S3 and Hyperboloid H3. For such problems the orientation of the vehicle is naturally represented by an orthonormal frame over a point in the underlying manifold. The orthonormal frame bundles of the space forms R3,S3 and H3 correspond with their isometry groups and are the Euclidean group of motion SE(3), the rotation group SO(4) and the Lorentzian group SO(1; 3) respectively. Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. For constant twist motions or helical motions, the corresponding curves g(t) 2 SE(3) are given in closed form by using the well known Rodrigues’ formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw/helical motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.
Resumo:
The factors influencing the formation of water-in-134a-propellant microemulsions using the fluorinated ionic surfactants ammonium perfluorooctanoate, ammonium perfluoroheptanoate, and sodium perfluorooctanoate has been determined. None of the fluorinated ionic surfactants could be used to prepare clear, one-phase systems when used as sole surfactant, but they could be when combined with a short-chain fluoro- or hydrocarbon alcohol in surfactant:cosurfactant weight-mixing ratios (K(m)) in the range 1:2 to 2:1. When hydrocarbon alcohols were used this clear region extended over a wide range of compositions and was confirmed by means of photon correlation spectroscopy (PCS) to contain microemulsion droplets in the propellant-rich part of the phase diagram. PCS studies performed in the presence of the water-soluble drug terbutaline sulfate showed that it was possible to solubilize the drug within water-in-propellant microemulsion droplets. These studies confirm for the first time that it is possible to prepare water-in-propellant 134a microemulsions using fluorinated ionic surfactants and to solubilize water-soluble drugs within these systems.
Resumo:
A structurally related series of fluorinated nonionic oxyethylene glycol surfactants of the type C(m)F(2m+1)(CH(2))(n)O[(CH(2)CH(2)O)(p)H], denoted C(m.n)E(p) (where m=4, 6, or 7, m=1 or 2, and p=4 or 6) were synthesized and their surface behavior in aqueous solution was characterized. The ability of these surfactants to form water-in-hydrofluorocarbon (HFC) propellant 134a microemulsions suitable for use in the aerosolized delivery of water-soluble drugs has been investigated. Phase studies showed that, regardless of the composition used, clear one-phase systems could not be prepared if a fluorinated nonionic surfactant was used alone, or in combination with a short or medium fluorocarbon alcohol cosurfactant. Clear one-phase systems could, however, be prepared if a short-chain hydrocarbon alcohol, such as ethanol, n-propanol, or n-pentanol, was used as cosurfactant, with the extent of the one-phase region increasing with decreased chain length of the alcohol cosurfactant. Light-scattering studies on a number of the hydrocarbon-alcoholcontaining systems in the propellant-rich part of the phase diagram showed that only systems prepared with C(4.2)E(6) and propanol contained microemulsion droplets (all other systems investigated were considered to be cosolvent systems).
Resumo:
A procedure is presented for fitting incoherent scatter radar data from non-thermal F-region ionospheric plasma, using theoretical spectra previously predicted. It is found that values of the shape distortion factor D∗, associated with deviations of the ion velocity distribution from a Maxwellian distribution, and ion temperatures can be deduced (the results being independent of the path of iteration) if the angle between the line-of-sight and the geomagnetic field is larger than about 15–20°. The procedure can be used with one or both of two sets of assumptions. These concern the validity of the adopted model for the line-of-sight ion velocity distribution in the one case or for the full three-dimensional ion velocity distribution function in the other. The distribution function employed was developed to describe the line-of-sight velocity distribution for large aspect angles, but both experimental data and Monte Carlo simulations indicate that the form of the field-perpendicular distribution can also describe the distribution at more general aspect angles. The assumption of this form for the line-of-sight velocity distribution at a general aspect angle enables rigorous derivation of values of the one-dimensional, line-of-sight ion temperature. With some additional assumptions (principally that the field-parallel distribution is always Maxwellian and there is a simple relationship between the ion temperature anisotropy and the distortion of the field-perpendicular distribution from a Maxwellian), fits to data for large aspect angles enable determination of line-of-sight temperatures at all aspect angles and hence, of the average ion temperature and the ion temperature anisotropy. For small aspect angles, the analysis is restricted to the determination of the line-of-sight ion temperature because the theoretical spectrum is insensitive to non-thermal effects when the plasma is viewed along directions almost parallel to the magnetic field. This limitation is expected to apply to any realistic model of the ion velocity distribution function and its consequences are discussed. Fit strategies which allow for mixed ion composition are also considered. Examples of fits to data from various EISCAT observing programmes are presented.
Resumo:
Assessment is made of the effect of the assumed form for the ion velocity distribution function on estimates of three-dimensional ion temperature from one-dimensional observations. Incoherent scatter observations by the EISCAT radar at a variety of aspect angles are used to demonstrate features of ion temperature determination and to study the ion velocity distribution function. One form of the distribution function which has recently been widely used In the interpretation of EISCAT measurements, is found to be consistent with the data presented here, in that no deviation from a Maxwellian can be detected for observations along the magnetic field line and that the ion temperature and its anisotropy are accurately predicted. It is shown that theoretical predictions of the anisotropy by Monte Carlo computations are very accurate, the observed value being greater by only a few percent. It is also demonstrated for the case studied that errors of up to 93% are introduced into the ion temperature estimate if the anisotropy is neglected. Observations at an aspect angle of 54.7°, which are not subject to this error, have a much smaller uncertainty (less than 1%) due to the adopted form of the distribution of line-of-sight velocity.
Resumo:
The study of the mechanical energy budget of the oceans using Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically re-arranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill-defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which we illustrate using climatological data, we show that compressibility effects are in fact minor. The reference state can be regarded as a well defined one-dimensional function of depth, which forms a surface in temperature, salinity and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. We show that the reference state obtained by standard sorting methods is equivalent, though computationally more expensive, to the volume frequency distribution approach. The approach we present can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data.
Resumo:
Traditional dictionary learning algorithms are used for finding a sparse representation on high dimensional data by transforming samples into a one-dimensional (1D) vector. This 1D model loses the inherent spatial structure property of data. An alternative solution is to employ Tensor Decomposition for dictionary learning on their original structural form —a tensor— by learning multiple dictionaries along each mode and the corresponding sparse representation in respect to the Kronecker product of these dictionaries. To learn tensor dictionaries along each mode, all the existing methods update each dictionary iteratively in an alternating manner. Because atoms from each mode dictionary jointly make contributions to the sparsity of tensor, existing works ignore atoms correlations between different mode dictionaries by treating each mode dictionary independently. In this paper, we propose a joint multiple dictionary learning method for tensor sparse coding, which explores atom correlations for sparse representation and updates multiple atoms from each mode dictionary simultaneously. In this algorithm, the Frequent-Pattern Tree (FP-tree) mining algorithm is employed to exploit frequent atom patterns in the sparse representation. Inspired by the idea of K-SVD, we develop a new dictionary update method that jointly updates elements in each pattern. Experimental results demonstrate our method outperforms other tensor based dictionary learning algorithms.
Resumo:
Changes in the depth of Lake Viljandi between 1940 and 1990 were simulated using a lake water and energy-balance model driven by standard monthly weather data. Catchment runoff was simulated using a one-dimensional hydrological model, with a two-layer soil, a single-layer snowpack, a simple representation of vegetation cover and similarly modest input requirements. Outflow was modelled as a function of lake level. The simulated record of lake level and outflow matched observations of lake-level variations (r = 0.78) and streamflow (r = 0.87) well. The ability of the model to capture both intra- and inter-annual variations in the behaviour of a specific lake, despite the relatively simple input requirements, makes it extremely suitable for investigations of the impacts of climate change on lake water balance.
Resumo:
A one-dimensional surface energy-balance lake model, coupled to a thermodynamic model of lake ice, is used to simulate variations in the temperature of and evaporation from three Estonian lakes: Karujärv, Viljandi and Kirjaku. The model is driven by daily climate data, derived by cubic-spline interpolation from monthly mean data, and was run for periods of 8 years (Kirjaku) up to 30 years (Viljandi). Simulated surface water temperature is in good agreement with observations: mean differences between simulated and observed temperatures are from −0.8°C to +0.1°C. The simulated duration of snow and ice cover is comparable with observed. However, the model generally underpredicts ice thickness and overpredicts snow depth. Sensitivity analyses suggest that the model results are robust across a wide range (0.1–2.0 m−1) of lake extinction coefficient: surface temperature differs by less than 0.5°C between extreme values of the extinction coefficient. The model results are more sensitive to snow and ice albedos. However, changing the snow (0.2–0.9) and ice (0.15–0.55) albedos within realistic ranges does not improve the simulations of snow depth and ice thickness. The underestimation of ice thickness is correlated with the overestimation of snow cover, since a thick snow layer insulates the ice and limits ice formation. The overestimation of snow cover results from the assumption that all the simulated winter precipitation occurs as snow, a direct consequence of using daily climate data derived by interpolation from mean monthly data.