995 resultados para Nonlinear Fredholm Alternative
Resumo:
This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.
Resumo:
30 p.
Resumo:
This article is intended to open a discussion about the historical development of lakes Zirahuen, Patzcuaro and Cuitzeo in the state of Michoacan, and the postulated relationships between lake ecology and evolution. Dr Fernando De Buen was the first man dedicated to limnology in Mexico who came to the country in the 1930s. He was adviser at the Estacion Limnologica de Patzcuaro and wrote outstanding papers dealing with Mexican lakes. The lakes of Michoacan probably formed in the late Pliocene or Holocene, and were part of a tributary to the Lerma River, which became isolated by successive volanic barriers to form lake basins. Lake Zirahuen is a warm monomictic waterbody with unique water dynamics amongst the Michoacan lakes. Because it is relatively deep (max depth 40m), seasonal patterns of alternating circulation and thermal stratification develop in the lake, a feature not shared by the other two polymictic shallow lakes, Patzcuaro and Cuitzeo.
Resumo:
The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.
Resumo:
The evolution of nonlinear light fields traveling inside a resonantly absorbing Bragg reflector is studied by use of Maxwell-Bloch equations. Numerical results show that a pulse initially resembling a light bullet may effectively experience negative refraction and anomalous dispersion in the resonantly absorbing Bragg reflector. (c) 2007 Optical Society of America.