940 resultados para Nitrogen-fixation
Resumo:
Nitrogen and phosphorus requirements of a chain-forming diatom, Skeletonema costatum (Greville) Cleve, collected from Yatsushiro Sea, Japan, were investigated in a laboratory culture experiment. Sodium nitrate and sodium glycerophosphate were used as nitrogen and phosphorus sources, respectively. Cultures were grown in modified Provasoli's ASP2NTA medium (Provasoli et al. 1957) at 25±1°C, light intensity 60 µE mˉ² secˉ¹ and photoperiod 12:12-h, L:D cycle. Optimum growth was observed at nitrate concentrations of 3-10 mglˉ¹ and phosphate concentrations of 1.5-15 mglˉ¹. Adequate growth was also found at the nitrate concentration of up to as high as 300 mglˉ¹. Significantly poorer growth was found at lower nitrate (<3.0 mglˉ¹) and higher phosphate (>15 mglˉ¹) concentrations. From the present study, it is concluded that S. costatum can grow well at wide ranges of nitrate concentrations but is sensitive to higher phosphate concentrations.
Resumo:
Changes in the major protein nitrogen fractions (sarcoplasmic, myofibrillar, stroma) have been studied in two species of prawns and in oil sardine held in ice storage. Myofibrillar proteins were observed to get denatured at a rapid rate as determined by salt extractability method. The sarcoplasmic proteins were not denatured to any considerable extent. With sardine however, the extraction of myofibrillar proteins was inhibited rather in the uniced condition itself presumably owing to the presence of free fatty acids.
Resumo:
Nitrogen can have numerous effects on diamond-like carbon: it can dope, it can form the hypothetical superhard compound C3N4, or it can create fullerene-like bonding structures. We studied amorphous carbon nitrogen films deposited by a filtered cathodic vacuum arc as a function of nitrogen content, ion energy and deposition temperature. The incorporation of nitrogen from 10-2 to 10 at% was measured by secondary ion mass spectrometry and elastic recoil detection analysis and was found to vary slightly sublinearly with N2 partial pressure during deposition. In the doping regime from 0 to about 0.4% N, the conductivity changes while the sp3 content and optical gap remain constant. From 0.4 to approximately 10% N, existing sp2 sites condense into clusters and reduce the band gap. Nitrogen contents over 10% change the bonding from mainly sp3 to mainly sp2. Ion energies between 20 and 250 eV do not greatly modify this behaviour. Deposition at higher temperatures causes a sudden loss of sp3 bonding above about 150 °C. Raman spectroscopy and optical gap data show that existing sp2 sites begin to cluster below this temperature, and the clustering continues above this temperature. This transition is found to vary only weakly with nitrogen addition, for N contents below 10%.