991 resultados para Newborn infants - Metabolism
Resumo:
Peripheral venous cannulation is the preferred method of inserting central venous silastic catheters in premature infants. The standard techniques are placement of the catheter using a breakaway introducer needle or introduction of the catheter through a cannula. In extremely low birth weight infants (<1000 g) successful cannulation is impeded by the small size of the vessels. After repeated attempts, both procedures can be time-consuming and stressful to the infant. We present a modified insertion technique of the standard 2-French silastic catheter with an increased success rate, thus reducing insertion time, stress to the infant, and costs. The method uses the tip of a 20-gauge cannula as dilator/introducer for the 2-French catheter. This tip is inserted into the vessel with a standard 24-gauge cannula. After successful insertion of the dilator/introducer cannula, the standard 2-French catheter can then be advanced easily.
Resumo:
The recent discovery of lipid-activatable transcription factors that regulate the genes controlling lipid metabolism and adipogenesis has provided insight into the way that organisms sense and respond to lipid levels. Identification of the signaling pathways in which these receptors are involved will help us to understand the control of energy balance and the molecular defects underlying its disorders.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon treated with low doses (0.5 nM) of epidermal growth factor (EGF) showed a small, transient increase in DNA synthesis but no significant changes in total DNA and protein content. By contrast, treatment with high doses (13 nM) of EGF caused a marked stimulation of DNA synthesis as well as a net increase in DNA and protein content. The expression of the astrocyte-specific enzyme, glutamine synthetase, was greatly enhanced both at low and at high EGF concentrations. These results suggest that at low concentration EGF stimulates exclusively the differentiation of astrocytes, whereas at high concentration, EGF has also a mitogenic effect. Nonproliferating astrocytes in cultures treated with 0.4 microM 1-beta-D-arabinofuranosyl-cytosine were refractory to EGF treatment, indicating that their responsiveness to EGF is cell cycle-dependent. Binding studies using a crude membrane fraction of 5-day cultures showed a homogeneous population of EGF binding sites (Kd approximately equal to 2.6 nM). Specific EGF binding sites were found also in non-proliferating (and nonresponsive) cultures, although they showed slightly reduced affinity and binding capacity. This finding suggests that the cell cycle-dependent control of astroglial responsiveness to EGF does not occur at the receptor level. However, it was found that the specific EGF binding sites disappear with progressive cellular differentiation.
Resumo:
Aging is a multidimensional process of physical, psychological, and social changes. Understanding how we sleep and how this dynamic process evolves across life span will help to identify normal developmental aspects of sleep over time and to create strategies to increase awareness of sleep disturbances and their early management. In normal sleepers from HypnoLaus cohort, we evaluated the effects of age and gender on both subjective and objective sleep measurements. Our results indicate that normal aging is not accompanied by sleep complaints, and when they exist suggest the presence of underlying comorbidities. Polysomnographic data revealed that slow wave sleep was more affected with age in men, and age affected differently NREM and REM spectral power densities. Both sleep structure and spectral analysis profiles may constitute standards to delineate pathological changes in sleep, both for aging women and men. Another important aspect in the management of sleep and its disorders is a detailed characterization of sleep-inducing medications. Gamma-hydroxybutyrate (GHB) is an inhibitory neurotransmitter derivative of GABA, but its mode of action and the range of effects are not well understood. Several properties, as growth hormone stimulation in humans and the development of weight loss in treated patients suggest an unexplored metabolic effect. In different experiments we assessed the effects of acute, short term and chronic GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism in C57BL/6J, GABAB knock-out and obese (ob/ob) mice. We showed that GHB treatment affects weight gain in C57BL/6J and GABAB knock-out mice. Metabolomic analysis indicated large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use. -- Le vieillissement est un processus multidimensionnel accompagné par de multiples changements dans les domaines physique, psychologique et social. Comprendre comment nous dormons et comment ce processus dynamique évolue sur la durée de vie nous aidera à identifier les aspects normaux du développement du sommeil au fil du temps, et à créer des stratégies pour accroître la connaissance et compréhension des troubles du sommeil et leur prise en charge précoce. Chez les sujets normaux de la cohorte HypnoLaus nous avons évalué les effets de l'âge et du sexe sur les mesures subjectives et objectives du sommeil. Nos résultats indiquent que le vieillissement normal ne s'accompagne pas de troubles du sommeil, et quand ils existent ceux-ci suggèrent la présence de comorbidités sous-jacentes. Les données polysomnographiques ont révélé que le sommeil profond était plus affecté avec l'âge chez les hommes. De plus, nous avons montré comment l'âge modifie la composition spectrale du sommeil lent et paradoxal. La structure du sommeil et les profils d'analyse spectrale peuvent donc constituer des standards permettant de définir les changements pathologiques du sommeil chez les personnes âgées. Parmi les aspects importants de la gestion du sommeil et de ses troubles, la caractérisation détaillée des médicaments hypnotiques utilisés est essentielle. L'acide gamma-hydroxybutyrique (GHB) est un acide gras à courte chaîne dérivé du GABA, principal neurotransmetteur inhibiteur du cerveau, mais son mode d'action et tous ses effets sont toujours largement méconnus. Plusieurs propriétés, comme la stimulation de la sécrétion de l'hormone de croissance chez l'homme et le développement d'une perte de poids chez les patients traités suggèrent un effet métabolique inexploré. Dans différentes expériences, nous avons évalué les effets d'une exposition aiguë, à court terme et chronique de GHB sur les processus biochimiques centraux (cortex cérébral) et périphériques (foie) impliqués dans le métabolisme du médicament. Nous avons aussi évalué les effets du médicament sur le métabolisme des souris C57BL/6J, GABAB KO et obèses (ob/ob). Nos résultats ont montré que le GHB diminue le gain de poids chez les souris C57BL/6J et GABAB KO. L'analyse métabolomique a indiqué des changements importants induits par GHB au niveau central et périphérique, et ces effets sont importants pour son utilisation thérapeutique.
Resumo:
PPARs are nuclear hormone receptors which, like the retinoid, thyroid hormone, vitamin D, and steroid hormone receptors, are ligand-activated transcription factors mediating the hormonal control of gene expression. Two lines of evidence indicate that PPARs have an important function in fatty acid metabolism. First, PPARs are activated by hypolipidemic drugs and physiological concentrations of fatty acids, and second, PPARs control the peroxisomal beta-oxidation pathway of fatty acids through transcriptional induction of the gene encoding the acyl-CoA oxidase (ACO), which is the rate-limiting enzyme of the pathway. Furthermore, the PPAR signaling pathway appears to converge with the 9-cis retinoic acid receptor (RXR) signaling pathway in the regulation of the ACO gene because heterodimerization between PPAR and RXR is essential for in vitro binding to the PPRE and because the strongest stimulation of this gene is observed when both receptors are exposed simultaneously to their activators. Thus, it appears that PPARs are involved in the 9-cis retinoic acid signaling pathway and that they play a pivotal role in the hormonal control of lipid metabolism.
Three small RNAs jointly ensure secondary metabolism and biocontrol in Pseudomonas fluorescens CHA0.
Resumo:
In many Gram-negative bacteria, the GacS/GacA two-component system positively controls the expression of extracellular products or storage compounds. In the plant-beneficial rhizosphere bacterium Pseudomonas fluorescens CHA0, the GacS/GacA system is essential for the production of antibiotic compounds and hence for biological control of root-pathogenic fungi. The small (119-nt) RNA RsmX discovered in this study, together with RsmY and RsmZ, forms a triad of GacA-dependent small RNAs, which sequester the RNA-binding proteins RsmA and RsmE and thereby antagonize translational repression exerted by these proteins in strain CHA0. This small RNA triad was found to be both necessary and sufficient for posttranscriptional derepression of biocontrol factors and for protection of cucumber from Pythium ultimum. The same three small RNAs also positively regulated swarming motility and the synthesis of a quorum-sensing signal, which is unrelated to N-acyl-homoserine lactones, and which autoinduces the Gac/Rsm cascade. Expression of RsmX and RsmY increased in parallel throughout cell growth, whereas RsmZ was produced during the late growth phase. This differential expression is assumed to facilitate fine tuning of GacS/A-controlled cell population density-dependent regulation in P. fluorescens.
Resumo:
Desmosomes are intercellular adhesive complexes that anchor the intermediate filament cytoskeleton to the cell membrane in epithelia and cardiac muscle cells. The desmosomal component desmoplakin plays a key role in tethering various intermediate filament networks through its C-terminal plakin repeat domain. To gain better insight into the cytoskeletal organization of cardiomyocytes, we investigated the association of desmoplakin with desmin by cell transfection, yeast two-hybrid, and/or in vitro binding assays. The results indicate that the association of desmoplakin with desmin depends on sequences within the linker region and C-terminal extremity of desmoplakin, where the B and C subdomains contribute to efficient binding; a potentially phosphorylatable serine residue in the C-terminal extremity of desmoplakin affects its association with desmin; the interaction of desmoplakin with non-filamentous desmin requires sequences contained within the desmin C-terminal rod portion and tail domain in yeast, whereas in in vitro binding studies the desmin tail is dispensable for association; and mutations in either the C-terminus of desmoplakin or the desmin tail linked to inherited cardiomyopathy seem to impair desmoplakindesmin interaction. These studies increase our understanding of desmoplakin-intermediate filament interactions, which are important for maintenance of cytoarchitecture in cardiomyocytes, and give new insights into the molecular basis of desmoplakin- and desmin-related human diseases.
Resumo:
Treball de recerca realitzat per alumnes d’ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l’any 2010. La recerca duta a terme pretén donar veu a persones que, essent infants, van patir el tancament en els camps de concentració del sud de França, i especialment el de Rivesaltes, a la fi de la Guerra Civil espanyola. S'intenta esbrinar si la situació traumàtica viscuda per aquests infants els hi ha permès, posteriorment, portar una vida satisfactòria, si han estat capaços de superar el record dur del seu tancament. L’objectiu és posar de manifest que els nens són les principals víctimes dels conflictes d'abans i d'ara i aquests conflictes poden deixar seqüeles que els dificultin dur una vida plena.
Resumo:
Glutathione (GSH) metabolism dysfunction is one risk factor in schizophrenia. A transitory brain GSH deficit was induced in Wistar (WIS) and mutant (ODS; lacking ascorbic acid synthesis) rats using BSO (l-buthionine-(S,R)-sulfoximine) from post-natal days 5-16. When GSH was re-established to physiological levels, juvenile BSO-ODS rats were impaired in the water maze task. Long after treatment cessation, adult BSO-WIS/-ODS rats showed impaired place discrimination in the homing board with distributed visual or olfactory cues. Their accuracy was restored when a single cue marked the trained position. Similarly, more working memory errors were made by adult BSO-WIS in the radial maze when several olfactory cues were present. These results reveal that BSO rats did not suffer simple sensory impairment. They were selectively impaired in spatial memory when the task required the integration of multimodal or olfactory cues. These results, in part, resemble some of the reported olfactory discrimination and cognitive impairment in schizophrenia.
Resumo:
Low malathion concentrations influence metabolism in Chironomus sancticaroli (Diptera, Chironomidae) in acute and chronic toxicity tests. Organophosphate compounds are used in agro-systems, and in programs to control pathogen vectors. Because they are continuously applied, organophosphates often reach water sources and may have an impact on aquatic life. The effects of acute and chronic exposure to the organophosphate insecticide malathion on the midge Chironomus sancticaroli are evaluated. To that end, three biochemical biomarkers, acetylcholinesterase (AChE), alpha (EST-α) and beta (EST-β) esterase were used. Acute bioassays with five concentrations of malathion, and chronic bioassays with two concentrations of malathion were carried out. In the acute exposure test, AChE, EST-α and EST-β activities declined by 66, 40 and 37%, respectively, at 0.251 µg L-1 and more than 80% at 1.37, 1.96 and 2.51 µg L-1. In chronic exposure tests, AChE and EST-α activities declined by 28 and 15% at 0.251 µg L-1. Results of the present study show that low concentrations of malathion can influence larval metabolism, indicating high toxicity for Chironomus sancticaroli and environmental risk associated with the use of organophosphates.
Resumo:
This paper presents a comparison of the changes in the energetic metabolic pattern of China and India, the two most populated countries in the world, with two economies undergoing an important economic transition. The comparison of the changes in the energetic metabolic pattern has the scope to characterize and explain a bifurcation in their evolutionary path in the recent years, using the Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach. The analysis shows an impressive transformation of China’s energy metabolism determined by the joining of the WTO in 2001. Since then, China became the largest factory of the world with a generalized capitalization of all sectors ―especially the industrial sector― boosting economic labor productivity as well as total energy consumption. India, on the contrary, lags behind when considering these factors. Looking at changes in the household sector (energy metabolism associated with final consumption) in the case of China, the energetic metabolic rate (EMR) soared in the last decade, also thanks to a reduced growth of population, whereas in India it remained stagnant for the last 40 years. This analysis indicates a big challenge for India for the next decade. In the light of the data analyzed both countries will continue to require strong injections of technical capital requiring a continuous increase in their total energy consumption. When considering the size of these economies it is easy to guess that this may induce a dramatic increase in the price of energy, an event that at the moment will penalize much more the chance of a quick economic development of India.
Resumo:
BACKGROUND AND PURPOSE: The optimal hemoglobin (Hgb) target after aneurysmal subarachnoid hemorrhage is not precisely known. We sought to examine the threshold of Hgb concentration associated with an increased risk of cerebral metabolic dysfunction in patients with poor-grade subarachnoid hemorrhage. METHODS: Twenty consecutive patients with poor-grade subarachnoid hemorrhage who underwent multimodality neuromonitoring (intracranial pressure, brain tissue oxygen tension, cerebral microdialysis) were studied prospectively. Brain tissue oxygen tension and extracellular lactate/pyruvate ratio were used as markers of cerebral metabolic dysfunction and the relationship between Hgb concentrations and the incidence of brain hypoxia (defined by a brain tissue oxygen tension <20 mm Hg) and cell energy dysfunction (defined by a lactate/pyruvate ratio >40) was analyzed. RESULTS: Compared with higher Hgb concentrations, a Hgb concentration <9 g/dL was associated with lower brain tissue oxygen tension (27.2 [interquartile range, 21.2 to 33.1] versus 19.9 [interquartile range, 7.1 to 33.1] mm Hg, P=0.02), higher lactate/pyruvate ratio (29 [interquartile range, 25 to 38] versus 36 [interquartile range, 26 to 59], P=0.16), and an increased incidence of brain hypoxia (21% versus 52%, P<0.01) and cell energy dysfunction (23% versus 43%, P=0.03). On multivariable analysis, a Hgb concentration <9 g/dL was associated with a higher risk of brain hypoxia (OR, 7.92; 95% CI, 2.32 to 27.09; P<0.01) and cell energy dysfunction (OR, 4.24; 95% CI, 1.33 to 13.55; P=0.02) after adjusting for cerebral perfusion pressure, central venous pressure, PaO(2)/FIO(2) ratio, and symptomatic vasospasm. CONCLUSIONS: A Hgb concentration <9 g/dL is associated with an increased incidence of brain hypoxia and cell energy dysfunction in patients with poor-grade subarachnoid hemorrhage.
Resumo:
Aims/hypothesis We assessed systemic and local muscle fuel metabolism during aerobic exercise in patients with type I diabetes at euglycaemia and hyperglycaemia with identical insulin levels.Methods This was a single-blinded randomised crossover study at a university diabetes unit in Switzerland. We studied seven physically active men with type I diabetes (mean +/- SEM age 33.5 +/- 2.4 years, diabetes duration 20.1 +/- 3.6 years, HbA(1c) 6.7 +/- 0.2% and peak oxygen uptake [VO2peak] 50.3 +/- 4.5 ml min(-1) kg(-1)). Men were studied twice while cycling for 120 min at 55 to 60% of VO2peak, with a blood glucose level randomly set either at 5 or 11 mmol/l and identical insulinaemia. The participants were blinded to the glycaemic level; allocation concealment was by opaque, sealed envelopes. Magnetic resonance spectroscopy was used to quantify intramyocellular glycogen and lipids before and after exercise. Indirect calorimetry and measurement of stable isotopes and counter-regulatory hormones complemented the assessment of local and systemic fuel metabolism.Results The contribution of lipid oxidation to overall energy metabolism was higher in euglycaemia than in hyperglycaemia (49.4 +/- 4.8 vs 30.6 +/- 4.2%; p<0.05). Carbohydrate oxidation accounted for 48.2 +/- 4.7 and 66.6 +/- 4.2% of total energy expenditure in euglycaemia and hyperglycaemia, respectively (p<0.05). The level of intramyocellular glycogen before exercise was higher in hyperglycaemia than in euglycaemia (3.4 +/- 0.3 vs 2.7 +/- 0.2 arbitrary units [AU]; p<0.05). Absolute glycogen consumption tended to be higher in hyperglycaemia than in euglycaemia (1.3 +/- 0.3 vs 0.9 +/- 0.1 AU). Cortisol and growth hormone increased more strongly in euglycaemia than in hyperglycaemia (levels at the end of exercise 634 52 vs 501 +/- 32 nmol/l and 15.5 +/- 4.5 vs 7.4 +/- 2.0 ng/ml, respectively; p<0.05).Conclusions/interpretation Substrate oxidation in type I diabetic patients performing aerobic exercise in euglycaemia is similar to that in healthy individuals revealing a shift towards lipid oxidation during exercise. In hyperglycaemia fuel metabolism in these patients is dominated by carbohydrate oxidation. Intramyocellular glycogen was not spared in hyperglycaemia.