881 resultados para New venture development
Resumo:
Neuroinflammatory pathways are main culprits of neurodegenerative diseases' onset and progression, including Alzheimer’s disease (AD). On this basis, several anti-inflammatory drugs were repurposed in clinical trials. However, they have failed, probably because neuroinflammation is a complex network, still not fully understood. From these evidences, this thesis focused on the design and synthesis of new chemical entities as potential neuroinflammatory drugs or chemical probes. Projects 1 and 2 aimed to multi-target-directed ligand (MTDL) development to target neuroinflammation in AD. Polypharmacology by MTDLs is considered one of the most promising strategies to face the multifactorial nature of neurodegenerative diseases. Particularly, Project 1 took inspiration from a cromolyn-ibuprofen drug combination polypharmacological approach, which was recently investigated in AD clinical trials. Based on that, two cromolyn-(S)-ibuprofen codrug series were designed and synthesized. Parent drugs were combined via linking or fusing strategies in 1:2 or 1:1 ratio, by means of hydrolyzable bonds. Project 2 started from a still ongoing AD clinical trial on investigational drug neflamapimod. It is a selective inhibitor of p38α-MAPK, a kinase strictly involved in neuroinflammatory pathways. On the other side, rasagiline, an anti-Parkinson drug, was also repurposed as AD treatment. Indeed, rasagiline’s propargylamine fragment demonstrated to be responsible not only for the MAO-B selective inhibition, but also for the neuroprotective activity. Thus, to synergistically combine these two effects into single-molecules, a small set of neflamapimod-rasagiline hybrids was developed. In the end BMX, a poorly investigated kinase, which seems to be involved in pro-inflammatory mediator production, was explored for the development of new chemical probes. High-quality chemical probes are a powerful tool in target validation and starting points for the development of new drug candidates. Thus, Project 3 focused on the design and synthesis of two series of optimized BMX covalent inhibitors as selective chemical probes.
Resumo:
Cultural heritage is constituted by complex and heterogenous materials, such as paintings but also ancient remains. However, all ancient materials are exposed to external environment and their interaction produces different changes due to chemical, physical and biological phenomena. The organic fraction, especially the proteinaceous one, has a crucial role in all these materials: in archaeology proteins reveal human habits, in artworks they disclose technics and help for a correct restoration. For these reasons the development of methods that allow the preservation of the sample as much as possible and a deeper knowledge of the deterioration processes is fundamental. The research activities presented in this PhD thesis have been focused on the development of new immunochemical and spectroscopic approaches in order to detect and identify organic substances in artistic and archaeological samples. Organic components could be present in different cultural heritage materials as constituent element (e.g., binders in paintings, collagen in bones) and their knowledge is fundamental for a complete understanding of past life, degradation processes and appropriate restauration approaches. The combination of immunological approach with a chemiluminescence detection and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry allowed a sensitive and selective localization of collagen and elements in ancient bones and teeth. Near-infrared spectrometer and hyper spectral imaging have been applied in combination with chemometric data analysis as non-destructive methods for bones prescreening for the localization of collagen. Moreover, an investigation of amino acids in enamel has been proposed, in order to clarify teeth biomolecules survival overtime through the optimization and application of High-Performance Liquid Chromatography on modern and ancient enamel powder. New portable biosensors were developed for ovalbumin identification in paintings, thanks to the combination between biocompatible Gellan gel and electro-immunochemical sensors, to extract and identify painting binders with the contact only between gel and painting and between gel and electrodes.
Resumo:
Noise is constant presence in measurements. Its origin is related to the microscopic properties of matter. Since the seminal work of Brown in 1828, the study of stochastic processes has gained an increasing interest with the development of new mathematical and analytical tools. In the last decades, the central role that noise plays in chemical and physiological processes has become recognized. The dual role of noise as nuisance/resource pushes towards the development of new decomposition techniques that divide a signal into its deterministic and stochastic components. In this thesis I show how methods based on Singular Spectrum Analysis have the right properties to fulfil the previously mentioned requirement. During my work I applied SSA to different signals of interest in chemistry: I developed a novel iterative procedure for the denoising of powder X-ray diffractograms; I “denoised” bi-dimensional images from experiments of electrochemiluminescence imaging of micro-beads obtaining new insight on ECL mechanism. I also used Principal Component Analysis to investigate the relationship between brain electrophysiological signals and voice emission.
Resumo:
Nuclear cross sections are the pillars onto which the transport simulation of particles and radiations is built on. Since the nuclear data libraries production chain is extremely complex and made of different steps, it is mandatory to foresee stringent verification and validation procedures to be applied to it. The work here presented has been focused on the development of a new python based software called JADE, whose objective is to give a significant help in increasing the level of automation and standardization of these procedures in order to reduce the time passing between new libraries releases and, at the same time, increasing their quality. After an introduction to nuclear fusion (which is the field where the majority of the V\&V action was concentrated for the time being) and to the simulation of particles and radiations transport, the motivations leading to JADE development are discussed. Subsequently, the code general architecture and the implemented benchmarks (both experimental and computational) are described. After that, the results coming from the major application of JADE during the research years are presented. At last, after a final discussion on the objective reached by JADE, the possible brief, mid and long time developments for the project are discussed.
Resumo:
Aims: This thesis aimed to investigate the influence of different collagen cross-linkers, as separate primers or contained within desensitizing agents, on the longevity of dental restorations and on the dentinal enzymatic activity immediately, or after aging in vitro. Methods: A series of studies was conducted using several different cross-linking molecules and several adhesive systems. Four studies investigated the longevity of the hybrid layer by means of microtensile bond strength test, and the enzymatic activity using gelatin and in situ zymography, immediately or after 1 year of aging in the artificial saliva. The first study tested samples bonded with or without a cross-linking agent, that were previously aged for 5 years. The degradation of the hybrid layer was observed using transmission electron microscopy, the enzymatic activity in the hybrid layer using in situ zymography. Raman spectroscopy was used to investigate whether the active substance was still within the hybrid layer after 5 years. Results: The results of the studies showed that collagen cross-linkers were efficient in preserving bond strength after aging in vitro when used as separate primers on demineralized or partially demineralized dentin. In the cases when the cross-linker was utilized on mineralized dentin, bond strength results were higher than in the control groups immediately and after aging, however, no difference in enzymatic activity was detected after aging. Conclusions: The tested cross-linker molecules used as separate primers in etch-and-rinse and self-etch adhesives seem to be clinically applicable, since the procedure is not overly time-consuming and seems to preserve the hybrid layer over time. As for the cross-linkers contained in the desensitizing agent, when utilized before the adhesive procedures, it has shown to increase the bond strength of self-etch adhesives, but further studies are needed to better understand its effect on the enzymatic activity and crosslinking effects on mineralized dentin.
Resumo:
Transition metal catalyzed cross-coupling reactions represent among the most versatile and useful tools in organic synthesis for the carbon-carbon (C-C) bond formation and have a prominent role in both the academic and pharmaceutical segments. Among them, palladium catalyzed cross-coupling reactions are currently the most versatile. In this thesis, the applications, impact and development of green palladium cross-coupling reactions are discussed. Specifically, we discuss the translation of the Twelve Principles of Green Chemistry and their applications in pharmaceutical organometallic chemistry to stimulate the development of cost-effective and sustainable catalytic processes for the synthesis of active pharmaceutical ingredients (API). The Heck-Cassar-Sonogashira (HCS) and the Suzuki-Miyaura (SM) protocols, using HEP/H2O as green mixture and sulfonated phosphine ligands, allowed to recycle and recover the catalyst, always guaranteeing high yields and fast conversion under mild conditions, with aryl iodides, bromides, triflates and chlorides. No catalyst leakage or metal contamination of the final product were observed during the HCS and SM reactions, respecting the very low limits for metal impurities in medicines established by the International Conference of Harmonization Guidelines Q3D (ICH Q3D). In addition, a deep understanding of the reaction mechanism is very important if the final target is to develop efficient protocols that can be applied at industrial level. Experimental and theoretical studies pointed out the presence of two catalytic cycles depending on the counterion, shedding light on the role of base in catalyst reduction and acetylene coordination in the HCS coupling. Finally, the development of a cross-coupling reaction to form aryldifluoronitriles in the presence of copper is discussed, highlighting the importance of inserting fluorine atoms within biological structures and the use of readily available metals such as copper as an alternative to palladium.
Resumo:
Hevea brasiliensis (Willd. Ex Adr. Juss.) Muell.-Arg. is the primary source of natural rubber that is native to the Amazon rainforest. The singular properties of natural rubber make it superior to and competitive with synthetic rubber for use in several applications. Here, we performed RNA sequencing (RNA-seq) of H. brasiliensis bark on the Illumina GAIIx platform, which generated 179,326,804 raw reads on the Illumina GAIIx platform. A total of 50,384 contigs that were over 400 bp in size were obtained and subjected to further analyses. A similarity search against the non-redundant (nr) protein database returned 32,018 (63%) positive BLASTx hits. The transcriptome analysis was annotated using the clusters of orthologous groups (COG), gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Pfam databases. A search for putative molecular marker was performed to identify simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). In total, 17,927 SSRs and 404,114 SNPs were detected. Finally, we selected sequences that were identified as belonging to the mevalonate (MVA) and 2-C-methyl-D-erythritol 4-phosphate (MEP) pathways, which are involved in rubber biosynthesis, to validate the SNP markers. A total of 78 SNPs were validated in 36 genotypes of H. brasiliensis. This new dataset represents a powerful information source for rubber tree bark genes and will be an important tool for the development of microsatellites and SNP markers for use in future genetic analyses such as genetic linkage mapping, quantitative trait loci identification, investigations of linkage disequilibrium and marker-assisted selection.
Resumo:
Hevea brasiliensis is a native species of the Amazon Basin of South America and the primary source of natural rubber worldwide. Due to the occurrence of South American Leaf Blight disease in this area, rubber plantations have been extended to suboptimal regions. Rubber tree breeding is time-consuming and expensive, but molecular markers can serve as a tool for early evaluation, thus reducing time and costs. In this work, we constructed six different cDNA libraries with the aim of developing gene-targeted molecular markers for the rubber tree. A total of 8,263 reads were assembled, generating 5,025 unigenes that were analyzed; 912 expressed sequence tags (ESTs) represented new transcripts, and two sequences were highly up-regulated by cold stress. These unigenes were scanned for microsatellite (SSR) regions and single nucleotide polymorphisms (SNPs). In total, 169 novel EST-SSR markers were developed; 138 loci were polymorphic in the rubber tree, and 98 % presented transferability to six other Hevea species. Locus duplication was observed in H. brasiliensis and other species. Additionally, 43 SNP markers in 13 sequences that showed similarity to proteins involved in stress response, latex biosynthesis and developmental processes were characterized. cDNA libraries are a rich source of SSR and SNP markers and enable the identification of new transcripts. The new markers developed here will be a valuable resource for linkage mapping, QTL identification and other studies in the rubber tree and can also be used to evaluate the genetic variability of other Hevea species, which are valuable assets in rubber tree breeding.
Resumo:
In this study, a novel concise series of molecules based on the structure of goniothalamin (1) was synthesized and evaluated against a highly metastatic human pancreatic cancer cell line (Panc-1). Among them, derivative 8 displayed a low IC50 value (2.7 μM) and its concentration for decreasing colony formation was 20-fold lower than goniothalamin (1). Both compounds reduced the levels of the receptor tyrosine kinase (AXL) and cyclin D1 which are known to be overexpressed in pancreatic cancer cells. Importantly, despite the fact that goniothalamin (1) and derivative 8 caused pancreatic cancer cell cycle arrest and cell death, only derivative 8 was able to downregulate pro-survival and proliferation pathways mediated by mitogen activated protein kinase ERK1/2. Another interesting finding was that Panc-1 cells treated with derivative 8 displayed a strong decrease in the transcription factor (c-Myc), hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) protein levels. Notably, the molecular effects caused by derivative 8 might not be related to ROS generation, since no significant production of ROS was observed in low concentrations of this compound (from 1.5 up to 3 μM). Therefore, the downregulation of important mediators of pancreatic cancer aggressiveness by derivative 8 reveals its great potential for the development of new chemotherapeutic agents for pancreatic cancer treatment.
Resumo:
The 2005 National Institutes of Health (NIH) Consensus Conference proposed new criteria for diagnosing and scoring the severity of chronic graft-versus-host disease (GVHD). The 2014 NIH consensus maintains the framework of the prior consensus with further refinement based on new evidence. Revisions have been made to address areas of controversy or confusion, such as the overlap chronic GVHD subcategory and the distinction between active disease and past tissue damage. Diagnostic criteria for involvement of mouth, eyes, genitalia, and lungs have been revised. Categories of chronic GVHD should be defined in ways that indicate prognosis, guide treatment, and define eligibility for clinical trials. Revisions have been made to focus attention on the causes of organ-specific abnormalities. Attribution of organ-specific abnormalities to chronic GVHD has been addressed. This paradigm shift provides greater specificity and more accurately measures the global burden of disease attributed to GVHD, and it will facilitate biomarker association studies.
Resumo:
There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.
Resumo:
A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.
Resumo:
Due to the development of nanoscience, the interest in electrochromism has increased and new assemblies of electrochromic materials at nanoscale leading to higher efficiencies and chromatic contrasts, low switching times and the possibility of color tuning have been developed. These advantages are reached due to the extensive surface area found in nanomaterials and the large amount of organic electrochromic molecules that can be easily attached onto inorganic nanoparticles, as TiO2 or SiO2. Moreover, the direct contact between electrolyte and nanomaterials produces high ionic transfer rates, leading to fast charge compensation, which is essential for high performance electrochromic electrodes. Recently, the layer-by-layer technique was presented as an interesting way to produce different architectures by the combination of both electrochromic nanoparticles and polymers. The present paper shows some of the newest insights into nanochromic science.