744 resultados para Neural network based walking


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As indústrias têm buscado constantemente reduzir gastos operacionais, visando o aumento do lucro e da competitividade. Para alcançar essa meta, são necessários, dentre outros fatores, o projeto e a implantação de novas ferramentas que permitam o acesso às informações relevantes do processo de forma precisa, eficiente e barata. Os sensores virtuais têm sido aplicados cada vez mais nas indústrias. Por ser flexível, ele pode ser adaptado a qualquer tipo de medição, promovendo uma redução de custos operacionais sem comprometer, e em alguns casos até melhorar, a qualidade da informação gerada. Como estão totalmente baseados em software, não estão sujeitos a danos físicos como os sensores reais, além de permitirem uma melhor adaptação a ambientes hostis e de difícil acesso. A razão do sucesso destes tipos de sensores é a utilização de técnicas de inteligência computacional, as quais têm sido usadas na modelagem de vários processos não lineares altamente complexos. Este trabalho tem como objetivo estimar a qualidade da alumina fluoretada proveniente de uma Planta de Tratamento de Gases (PTG), a qual é resultado da adsorção de gases poluentes em alumina virgem, via sensor virtual. O modelo que emula o comportamento de um sensor de qualidade de alumina foi criado através da técnica de inteligência computacional conhecida como Rede Neural Artificial. As motivações deste trabalho consistem em: realizar simulações virtuais, sem comprometer o funcionamento da PTG; tomar decisões mais precisas e não baseada somente na experiência do operador; diagnosticar potenciais problemas, antes que esses interfiram na qualidade da alumina fluoretada; manter o funcionamento do forno de redução de alumínio dentro da normalidade, pois a produção de alumina de baixa qualidade afeta a reação de quebra da molécula que contém este metal. Os benefícios que este projeto trará consistem em: aumentar a eficiência da PTG, produzindo alumina fluoretada de alta qualidade e emitindo menos gases poluentes na atmosfera, além de aumentar o tempo de vida útil do forno de redução.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aimed to compare the predictive capacity of empirical models, based on the uniform design utilization combined to artificial neural networks with respect to classical factorial designs in bioprocess, using as example the rabies virus replication in BHK-21 cells. The viral infection process parameters under study were temperature (34°C, 37°C), multiplicity of infection (0.04, 0.07, 0.1), times of infection, and harvest (24, 48, 72 hours) and the monitored output parameter was viral production. A multilevel factorial experimental design was performed for the study of this system. Fractions of this experimental approach (18, 24, 30, 36 and 42 runs), defined according uniform designs, were used as alternative for modelling through artificial neural network and thereafter an output variable optimization was carried out by means of genetic algorithm methodology. Model prediction capacities for all uniform design approaches under study were better than that found for classical factorial design approach. It was demonstrated that uniform design in combination with artificial neural network could be an efficient experimental approach for modelling complex bioprocess like viral production. For the present study case, 67% of experimental resources were saved when compared to a classical factorial design approach. In the near future, this strategy could replace the established factorial designs used in the bioprocess development activities performed within biopharmaceutical organizations because of the improvements gained in the economics of experimentation that do not sacrifice the quality of decisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.