762 resultados para Neural Network Assembly Memory Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical multi-label classification is a complex classification task where the classes involved in the problem are hierarchically structured and each example may simultaneously belong to more than one class in each hierarchical level. In this paper, we extend our previous works, where we investigated a new local-based classification method that incrementally trains a multi-layer perceptron for each level of the classification hierarchy. Predictions made by a neural network in a given level are used as inputs to the neural network responsible for the prediction in the next level. We compare the proposed method with one state-of-the-art decision-tree induction method and two decision-tree induction methods, using several hierarchical multi-label classification datasets. We perform a thorough experimental analysis, showing that our method obtains competitive results to a robust global method regarding both precision and recall evaluation measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is based on five papers addressing variance reduction in different ways. The papers have in common that they all present new numerical methods. Paper I investigates quantitative structure-retention relationships from an image processing perspective, using an artificial neural network to preprocess three-dimensional structural descriptions of the studied steroid molecules. Paper II presents a new method for computing free energies. Free energy is the quantity that determines chemical equilibria and partition coefficients. The proposed method may be used for estimating, e.g., chromatographic retention without performing experiments. Two papers (III and IV) deal with correcting deviations from bilinearity by so-called peak alignment. Bilinearity is a theoretical assumption about the distribution of instrumental data that is often violated by measured data. Deviations from bilinearity lead to increased variance, both in the data and in inferences from the data, unless invariance to the deviations is built into the model, e.g., by the use of the method proposed in paper III and extended in paper IV. Paper V addresses a generic problem in classification; namely, how to measure the goodness of different data representations, so that the best classifier may be constructed. Variance reduction is one of the pillars on which analytical chemistry rests. This thesis considers two aspects on variance reduction: before and after experiments are performed. Before experimenting, theoretical predictions of experimental outcomes may be used to direct which experiments to perform, and how to perform them (papers I and II). After experiments are performed, the variance of inferences from the measured data are affected by the method of data analysis (papers III-V).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi tratta di strumenti finalizzati alla valutazione dello stato conservativo e di supporto all'attività di manutenzione dei ponti, dai più generali Bridge Management Systems ai Sistemi di Valutazione Numerica della Condizione strutturale. Viene proposto uno strumento originale con cui classificare i ponti attraverso un Indice di Valutazione Complessiva e grazie ad esso stabilire le priorità d'intervento. Si tara lo strumento sul caso pratico di alcuni ponti della Provincia di Bologna. Su un ponte in particolare viene realizzato un approfondimento specifico sulla determinazione approssimata dei periodi propri delle strutture da ponte. Si effettua un confronto dei risultati di alcune modellazioni semplificate in riferimento a modellazioni dettagliate e risultati sperimentali.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of brain connectivity among different brain areas during cognitive or motor tasks is a crucial problem in neuroscience today. Aim of this research study is to use neural mass models to assess the effect of various connectivity patterns in cortical EEG power spectral density (PSD), and investigate the possibility to derive connectivity circuits from EEG data. To this end, two different models have been built. In the first model an individual region of interest (ROI) has been built as the parallel arrangement of three populations, each one exhibiting a unimodal spectrum, at low, medium or high frequency. Connectivity among ROIs includes three parameters, which specify the strength of connection in the different frequency bands. Subsequent studies demonstrated that a single population can exhibit many different simultaneous rhythms, provided that some of these come from external sources (for instance, from remote regions). For this reason in the second model an individual ROI is simulated only with a single population. Both models have been validated by comparing the simulated power spectral density with that computed in some cortical regions during cognitive and motor tasks. Another research study is focused on multisensory integration of tactile and visual stimuli in the representation of the near space around the body (peripersonal space). This work describes an original neural network to simulate representation of the peripersonal space around the hands, in basal conditions and after training with a tool used to reach the far space. The model is composed of three areas for each hand, two unimodal areas (visual and tactile) connected to a third bimodal area (visual-tactile), which is activated only when a stimulus falls within the peripersonal space. Results show that the peripersonal space, which includes just a small visual space around the hand in normal conditions, becomes elongated in the direction of the tool after training, thanks to a reinforcement of synapses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several lines of evidence showed that inflammation is associated with changes in the expression of tachykinins both in human and animal models. Tachykinins, including substance P (SP), are small peptides expressed in the extrinsic primary afferent nerve fibres and enteric neurons of the gut: they exert their action through three distinct receptors, termed NK1, NK2 and NK3. SP modulates intestinal motility and enteric secretion, acting preferentially through the NK1 receptor. SP neural network and NK1 receptor expression are increased in patients with inflammatory bowel disease, and similar changes were observed in experimental models of inflammation. The 2,4 Dinitrobenzene Sulphonic Acid (DNBS) model of colitis is useful to study innate immunity, non-specific inflammation and wound healing; it has been suggested that the transmural inflammation seen in this model resembles that found in Crohn’s disease and can therefore be used to study what cells and mediators are involved in this type of inflammation. Aim: To test the possible protective effect of the NK1 receptor antagonist SSR140333 on: 1) acute model of intestinal inflammation; 2) reactivation of DNBS-induced colitis in rats. Methods: Acute colitis was induced in male SD rats by intrarectal administration of DNBS (15 mg/rat in 50% ethanol). Reactivation of colitis was induced by intrarectal injections of DNBS on day 28 (7.5 mg/rat in 35% ethanol). Animals were sacrificed on day 6 (acute colitis) and 29 (reactivation of colitis). SSR140333 (10 mg/kg) was administered orally starting from the day before the induction of colitis for 7 days (acute colitis) or seven days before the reactivation of colitis. Colonic damage was assessed by means of macroscopic and microscopic scores, myeloperoxidase activity (MPO) and TNF-α tissue levels. Enzyme immunoassay was used to measure colonic substance P levels. Statistical analysis was performed using analysis of variance (one-way or two-way, as appropriate) with the Bonferroni’s correction for multiple comparisons. Results: DNBS administration impaired body weight gain and markedly increased all inflammatory parameters (p<0.01). Treatment with SSR140333 10 mg/kg significantly counteracted the impairment in body weight gain, decreased macroscopic and histological scores and reduced colonic myeloperoxidase activity (p<0.01). Drug treatment counteracted TNF-α tissue levels and colonic SP concentrations (acute model). Similar results were obtained administering the NK1 receptor antagonist SSR140333 (3 and 10 mg/kg) for 5 days, starting the day after the induction of colitis. Intrarectal administration of DNBS four weeks after the first DNBS administration resulted in reactivation of colitis, with increases in macroscopic and histological damage scores and increase in MPO activity. Preventive treatment with SSR140333 10 mg/kg decreased macroscopic damage score, significantly reduced microscopic damage score but did not affect MPO activity. Conclusions: Treatment with SSR140333 significantly reduced intestinal damage in acute model of intestinal inflammation in rats. The NK1 receptor antagonist SSR140333 was also able to prevent relapse in experimental colitis. These results support the hypothesis of SP involvement in intestinal inflammation and indicate that NK receptor antagonists may have a therapeutic potential in inflammatory bowel disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ph.D. thesis describes the simulations of different microwave links from the transmitter to the receiver intermediate-frequency ports, by means of a rigorous circuit-level nonlinear analysis approach coupled with the electromagnetic characterization of the transmitter and receiver front ends. This includes a full electromagnetic computation of the radiated far field which is used to establish the connection between transmitter and receiver. Digitally modulated radio-frequency drive is treated by a modulation-oriented harmonic-balance method based on Krylov-subspace model-order reduction to allow the handling of large-size front ends. Different examples of links have been presented: an End-to-End link simulated by making use of an artificial neural network model; the latter allows a fast computation of the link itself when driven by long sequences of the order of millions of samples. In this way a meaningful evaluation of such link performance aspects as the bit error rate becomes possible at the circuit level. Subsequently, a work focused on the co-simulation an entire link including a realistic simulation of the radio channel has been presented. The channel has been characterized by means of a deterministic approach, such as Ray Tracing technique. Then, a 2x2 multiple-input multiple-output antenna link has been simulated; in this work near-field and far-field coupling between radiating elements, as well as the environment factors, has been rigorously taken into account. Finally, within the scope to simulate an entire ultra-wideband link, the transmitting side of an ultrawideband link has been designed, and an interesting Front-End co-design technique application has been setup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis work is to develop a computational method based on machine learning techniques for predicting disulfide-bonding states of cysteine residues in proteins, which is a sub-problem of a bigger and yet unsolved problem of protein structure prediction. Improvement in the prediction of disulfide bonding states of cysteine residues will help in putting a constraint in the three dimensional (3D) space of the respective protein structure, and thus will eventually help in the prediction of 3D structure of proteins. Results of this work will have direct implications in site-directed mutational studies of proteins, proteins engineering and the problem of protein folding. We have used a combination of Artificial Neural Network (ANN) and Hidden Markov Model (HMM), the so-called Hidden Neural Network (HNN) as a machine learning technique to develop our prediction method. By using different global and local features of proteins (specifically profiles, parity of cysteine residues, average cysteine conservation, correlated mutation, sub-cellular localization, and signal peptide) as inputs and considering Eukaryotes and Prokaryotes separately we have reached to a remarkable accuracy of 94% on cysteine basis for both Eukaryotic and Prokaryotic datasets, and an accuracy of 90% and 93% on protein basis for Eukaryotic dataset and Prokaryotic dataset respectively. These accuracies are best so far ever reached by any existing prediction methods, and thus our prediction method has outperformed all the previously developed approaches and therefore is more reliable. Most interesting part of this thesis work is the differences in the prediction performances of Eukaryotes and Prokaryotes at the basic level of input coding when ‘profile’ information was given as input to our prediction method. And one of the reasons for this we discover is the difference in the amino acid composition of the local environment of bonded and free cysteine residues in Eukaryotes and Prokaryotes. Eukaryotic bonded cysteine examples have a ‘symmetric-cysteine-rich’ environment, where as Prokaryotic bonded examples lack it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the numerical coupling of thermal and electric network models with model equations for optoelectronic semiconductor devices is presented. Modified nodal analysis (MNA) is applied to model electric networks. Thermal effects are modeled by an accompanying thermal network. Semiconductor devices are modeled by the energy-transport model, that allows for thermal effects. The energy-transport model is expandend to a model for optoelectronic semiconductor devices. The temperature of the crystal lattice of the semiconductor devices is modeled by the heat flow eqaution. The corresponding heat source term is derived under thermodynamical and phenomenological considerations of energy fluxes. The energy-transport model is coupled directly into the network equations and the heat flow equation for the lattice temperature is coupled directly into the accompanying thermal network. The coupled thermal-electric network-device model results in a system of partial differential-algebraic equations (PDAE). Numerical examples are presented for the coupling of network- and one-dimensional semiconductor equations. Hybridized mixed finite elements are applied for the space discretization of the semiconductor equations. Backward difference formluas are applied for time discretization. Thus, positivity of charge carrier densities and continuity of the current density is guaranteed even for the coupled model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il tumore al seno si colloca al primo posto per livello di mortalità tra le patologie tumorali che colpiscono la popolazione femminile mondiale. Diversi studi clinici hanno dimostrato come la diagnosi da parte del radiologo possa essere aiutata e migliorata dai sistemi di Computer Aided Detection (CAD). A causa della grande variabilità di forma e dimensioni delle masse tumorali e della somiglianza di queste con i tessuti che le ospitano, la loro ricerca automatizzata è un problema estremamente complicato. Un sistema di CAD è generalmente composto da due livelli di classificazione: la detection, responsabile dell’individuazione delle regioni sospette presenti sul mammogramma (ROI) e quindi dell’eliminazione preventiva delle zone non a rischio; la classificazione vera e propria (classification) delle ROI in masse e tessuto sano. Lo scopo principale di questa tesi è lo studio di nuove metodologie di detection che possano migliorare le prestazioni ottenute con le tecniche tradizionali. Si considera la detection come un problema di apprendimento supervisionato e lo si affronta mediante le Convolutional Neural Networks (CNN), un algoritmo appartenente al deep learning, nuova branca del machine learning. Le CNN si ispirano alle scoperte di Hubel e Wiesel riguardanti due tipi base di cellule identificate nella corteccia visiva dei gatti: le cellule semplici (S), che rispondono a stimoli simili ai bordi, e le cellule complesse (C) che sono localmente invarianti all’esatta posizione dello stimolo. In analogia con la corteccia visiva, le CNN utilizzano un’architettura profonda caratterizzata da strati che eseguono sulle immagini, alternativamente, operazioni di convoluzione e subsampling. Le CNN, che hanno un input bidimensionale, vengono solitamente usate per problemi di classificazione e riconoscimento automatico di immagini quali oggetti, facce e loghi o per l’analisi di documenti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work is focused on the analysis of sea–level change (last century), based mainly on instrumental observations. During this period, individual components of sea–level change are investigated, both at global and regional scales. Some of the geophysical processes responsible for current sea-level change such as glacial isostatic adjustments and current melting terrestrial ice sources, have been modeled and compared with observations. A new value of global mean sea level change based of tide gauges observations has been independently assessed in 1.5 mm/year, using corrections for glacial isostatic adjustment obtained with different models as a criterion for the tide gauge selection. The long wavelength spatial variability of the main components of sea–level change has been investigated by means of traditional and new spectral methods. Complex non–linear trends and abrupt sea–level variations shown by tide gauges records have been addressed applying different approaches to regional case studies. The Ensemble Empirical Mode Decomposition technique has been used to analyse tide gauges records from the Adriatic Sea to ascertain the existence of cyclic sea-level variations. An Early Warning approach have been adopted to detect tipping points in sea–level records of North East Pacific and their relationship with oceanic modes. Global sea–level projections to year 2100 have been obtained by a semi-empirical approach based on the artificial neural network method. In addition, a model-based approach has been applied to the case of the Mediterranean Sea, obtaining sea-level projection to year 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many of developing countries are facing crisis in water management due to increasing of population, water scarcity, water contaminations and effects of world economic crisis. Water distribution systems in developing countries are facing many challenges of efficient repair and rehabilitation since the information of water network is very limited, which makes the rehabilitation assessment plans very difficult. Sufficient information with high technology in developed countries makes the assessment for rehabilitation easy. Developing countries have many difficulties to assess the water network causing system failure, deterioration of mains and bad water quality in the network due to pipe corrosion and deterioration. The limited information brought into focus the urgent need to develop economical assessment for rehabilitation of water distribution systems adapted to water utilities. Gaza Strip is subject to a first case study, suffering from severe shortage in the water supply and environmental problems and contamination of underground water resources. This research focuses on improvement of water supply network to reduce the water losses in water network based on limited database using techniques of ArcGIS and commercial water network software (WaterCAD). A new approach for rehabilitation water pipes has been presented in Gaza city case study. Integrated rehabilitation assessment model has been developed for rehabilitation water pipes including three components; hydraulic assessment model, Physical assessment model and Structural assessment model. WaterCAD model has been developed with integrated in ArcGIS to produce the hydraulic assessment model for water network. The model have been designed based on pipe condition assessment with 100 score points as a maximum points for pipe condition. As results from this model, we can indicate that 40% of water pipeline have score points less than 50 points and about 10% of total pipes length have less than 30 score points. By using this model, the rehabilitation plans for each region in Gaza city can be achieved based on available budget and condition of pipes. The second case study is Kuala Lumpur Case from semi-developed countries, which has been used to develop an approach to improve the water network under crucial conditions using, advanced statistical and GIS techniques. Kuala Lumpur (KL) has water losses about 40% and high failure rate, which make severe problem. This case can represent cases in South Asia countries. Kuala Lumpur faced big challenges to reduce the water losses in water network during last 5 years. One of these challenges is high deterioration of asbestos cement (AC) pipes. They need to replace more than 6500 km of AC pipes, which need a huge budget to be achieved. Asbestos cement is subject to deterioration due to various chemical processes that either leach out the cement material or penetrate the concrete to form products that weaken the cement matrix. This case presents an approach for geo-statistical model for modelling pipe failures in a water distribution network. Database of Syabas Company (Kuala Lumpur water company) has been used in developing the model. The statistical models have been calibrated, verified and used to predict failures for both networks and individual pipes. The mathematical formulation developed for failure frequency in Kuala Lumpur was based on different pipeline characteristics, reflecting several factors such as pipe diameter, length, pressure and failure history. Generalized linear model have been applied to predict pipe failures based on District Meter Zone (DMZ) and individual pipe levels. Based on Kuala Lumpur case study, several outputs and implications have been achieved. Correlations between spatial and temporal intervals of pipe failures also have been done using ArcGIS software. Water Pipe Assessment Model (WPAM) has been developed using the analysis of historical pipe failure in Kuala Lumpur which prioritizing the pipe rehabilitation candidates based on ranking system. Frankfurt Water Network in Germany is the third main case study. This case makes an overview for Survival analysis and neural network methods used in water network. Rehabilitation strategies of water pipes have been developed for Frankfurt water network in cooperation with Mainova (Frankfurt Water Company). This thesis also presents a methodology of technical condition assessment of plastic pipes based on simple analysis. This thesis aims to make contribution to improve the prediction of pipe failures in water networks using Geographic Information System (GIS) and Decision Support System (DSS). The output from the technical condition assessment model can be used to estimate future budget needs for rehabilitation and to define pipes with high priority for replacement based on poor condition. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epileptic seizures are the manifestations of epilepsy, which is a major neurological disorder and occurs with a high incidence during early childhood. A fundamental mechanism underlying epileptic seizures is loss of balance between neural excitation and inhibition toward overexcitation. Glycine receptor (GlyR) is ionotropic neurotransmitter receptor that upon binding of glycine opens an anion pore and mediates in the adult nervous system a consistent inhibitory action. While previously it was assumed that GlyRs mediate inhibition mainly in the brain stem and spinal cord, recent studies reported the abundant expression of GlyRs throughout the brain, in particular during neuronal development. But no information is available regarding whether activation of GlyRs modulates neural network excitability and epileptiform activities in the immature central nervous system (CNS). Therefore the study in this thesis addresses the role of GlyRs in the modulation of neuronal excitability and epileptiform activity in the immature rat brain. By using in vitro intact corticohippocampal formation (CHF) of rats at postnatal days 4-7 and electrophysiological methods, a series of pharmacological examinations reveal that GlyRs are directly implicated in the control of hippocampal excitation levels at this age. In this thesis I am able to show that GlyRs are functionally expressed in the immature hippocampus and exhibit the classical pharmacology of GlyR, which can be activated by both glycine and the presumed endogenous agonist taurine. This study also reveals that high concentration of taurine is anticonvulsive, but lower concentration of taurine is proconvulsive. A substantial fraction of both the pro- and anticonvulsive effects of taurine is mediated via GlyRs, although activation of GABAA receptors also considerably contributes to the taurine effects. Similarly, glycine exerts both pro- and anticonvulsive effects at low and high concentrations, respectively. The proconvulsive effects of taurine and glycine depend on NKCC1-mediated Cl- accumulation, as bath application of NKCC1 inhibitor bumetanide completely abolishes proconvulsive effects of low taurine and glycine concentrations. Inhibition of GlyRs with low concentration of strychnine triggers epileptiform activity in the CA3 region of immature CHF, indicating that intrinsically an inhibitory action of GlyRs overwhelms its depolarizing action in the immature hippocampus. Additionally, my study indicates that blocking taurine transporters to accumulate endogenous taurine reduces epileptiform activity via activation of GABAA receptors, but not GlyRs, while blocking glycine transporters has no observable effect on epileptiform activity. From the main results of this study it can be concluded that in the immature rat hippocampus, activation of GlyRs mediates both pro- and anticonvulsive effects, but that a persistent activation of GlyRs is required to prevent intrinic neuronal overexcitability. In summary, this study uncovers an important role of GlyRs in the modulation of neuronal excitability and epileptiform activity in the immature rat hippocampus, and indicates that glycinergic system can potentially be a new therapeutic target against epileptic seizures of children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Advances in biotechnology have shed light on many biological processes. In biological networks, nodes are used to represent the function of individual entities within a system and have historically been studied in isolation. Network structure adds edges that enable communication between nodes. An emerging fieldis to combine node function and network structure to yield network function. One of the most complex networks known in biology is the neural network within the brain. Modeling neural function will require an understanding of networks, dynamics, andneurophysiology. It is with this work that modeling techniques will be developed to work at this complex intersection. Methods: Spatial game theory was developed by Nowak in the context of modeling evolutionary dynamics, or the way in which species evolve over time. Spatial game theory offers a two dimensional view of analyzingthe state of neighbors and updating based on the surroundings. Our work builds upon this foundation by studying evolutionary game theory networks with respect to neural networks. This novel concept is that neurons may adopt a particular strategy that will allow propagation of information. The strategy may therefore act as the mechanism for gating. Furthermore, the strategy of a neuron, as in a real brain, isimpacted by the strategy of its neighbors. The techniques of spatial game theory already established by Nowak are repeated to explain two basic cases and validate the implementation of code. Two novel modifications are introduced in Chapters 3 and 4 that build on this network and may reflect neural networks. Results: The introduction of two novel modifications, mutation and rewiring, in large parametricstudies resulted in dynamics that had an intermediate amount of nodes firing at any given time. Further, even small mutation rates result in different dynamics more representative of the ideal state hypothesized. Conclusions: In both modificationsto Nowak's model, the results demonstrate the network does not become locked into a particular global state of passing all information or blocking all information. It is hypothesized that normal brain function occurs within this intermediate range and that a number of diseases are the result of moving outside of this range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on an integrative brain model which focuses on memory-driven and EEG state-dependent information processing for the organisation of behaviour, we used the developmental changes of the awake EEG to further investigate the hypothesis that neurodevelopmental abnormalities (deviations in organisation and reorganisation of cortico-cortical connectivity during development) are involved in the pathogenesis of schizophrenia. First-episode, neuroleptic-naive schizophrenics and their matched controls and three age groups of normal adolescents were studied (total: 70 subjects). 19-channel EEG delta-theta, alpha and beta spectral band centroid frequencies during resting (baseline) and after verbal stimuli were used as measure of the level of attained complexity and momentary excitability of the neuronal network (working memory). Schizophrenics compared with all control groups showed lower delta-theta activity centroids and higher alpha and beta activity centroids. Reactivity centroids (centroid after stimulus minus centroid during resting) were used as measure of update of working memory. Schizophrenics showed partial similarities in delta-theta and beta reactivity centroids with the 11-year olds and in alpha reactivity centroids with the 13-year olds. Within the framework of our model, the results suggest multifactorially elicited imbalances in the level of excitability of neuronal networks in schizophrenia, resulting in network activation at dissociated complexity levels, partially regressed and partially prematurely developed. It is hypothesised that activation of age- and/or state-inadequate representations for coping with realities becomes manifest as productive schizophrenic symptoms. Thus, the results support some aspects of the neurodevelopmental hypothesis.