927 resultados para Networks on chip (NoC)
Resumo:
Four dispersion methods were used for the preparation of vapour grown carbon nanofibre (VGCNF)/epoxy composites. It is shown that each method induces certain levels of VGCNF dispersion and distribution within the matrix, and that these have a strong influence on the composite electrical properties. A homogenous VGCNF dispersion does not necessarily imply higher electrical conductivity. In fact, it is concluded that the presence of well distributed clusters, rather than a fine dispersion, is more important for achieving larger conductivities for a given VGCNF concentration. It is also found that the conductivity can be described by a weak disorder regime.
Resumo:
The influence of the dispersion of vapor-grown carbon nanofibers (VGCNF) on the electrical properties of VGCNF/ Epoxy composites has been studied. A homogenous dispersion of the VGCNF does not imply better electrical properties. In fact, it is demonstrated that the most simple of the tested dispersion methods results in higher conductivity, since the presence of well-distributed nanofiber clusters appears to be a key factor for increasing composite conductivity.
Resumo:
Exposure to a novel environment triggers the response of several brain areas that regulate emotional behaviors. Here, we studied theta oscillations within the hippocampus (HPC)-amygdala (AMY)-medial prefrontal cortex (mPFC) network in exploration of a novel environment and subsequent familiarization through repeated exposures to that same environment; in addition, we assessed how concomitant stress exposure could disrupt this activity and impair both behavioral processes. Local field potentials were simultaneously recorded from dorsal and ventral hippocampus (dHPC and vHPC respectively), basolateral amygdala (BLA) and mPFC in freely behaving rats while they were exposed to a novel environment, then repeatedly re-exposed over the course of 3 weeks to that same environment and, finally, on re-exposure to a novel unfamiliar environment. A longitudinal analysis of theta activity within this circuit revealed a reduction of vHPC and BLA theta power and vHPC-BLA theta coherence through familiarization which was correlated with a return to normal exploratory behavior in control rats. In contrast, a persistent over-activation of the same brain regions was observed in stressed rats that displayed impairments in novel exploration and familiarization processes. Importantly, we show that stress also affected intra-hippocampal synchrony and heightened the coherence between vHPC and BLA. In summary, we demonstrate that modulatory theta activity in the aforementioned circuit, namely in the vHPC and BLA, is correlated with the expression of anxiety in novelty-induced exploration and familiarization in both normal and pathological conditions.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
AIM: This work presents detailed experimental performance results from tests executed in the hospital environment for Health Monitoring for All (HM4All), a remote vital signs monitoring system based on a ZigBee® (ZigBee Alliance, San Ramon, CA) body sensor network (BSN). MATERIALS AND METHODS: Tests involved the use of six electrocardiogram (ECG) sensors operating in two different modes: the ECG mode involved the transmission of ECG waveform data and heart rate (HR) values to the ZigBee coordinator, whereas the HR mode included only the transmission of HR values. In the absence of hidden nodes, a non-beacon-enabled star network composed of sensing devices working on ECG mode kept the delivery ratio (DR) at 100%. RESULTS: When the network topology was changed to a 2-hop tree, the performance degraded slightly, resulting in an average DR of 98.56%. Although these performance outcomes may seem satisfactory, further investigation demonstrated that individual sensing devices went through transitory periods with low DR. Other tests have shown that ZigBee BSNs are highly susceptible to collisions owing to hidden nodes. Nevertheless, these tests have also shown that these networks can achieve high reliability if the amount of traffic is kept low. Contrary to what is typically shown in scientific articles and in manufacturers' documentation, the test outcomes presented in this article include temporal graphs of the DR achieved by each wireless sensor device. CONCLUSIONS: The test procedure and the approach used to represent its outcomes, which allow the identification of undesirable transitory periods of low reliability due to contention between devices, constitute the main contribution of this work.
Resumo:
Pectus excavatum is the most common deformity of the thorax. Pre-operative diagnosis usually includes Computed Tomography (CT) to successfully employ a thoracic prosthesis for anterior chest wall remodeling. Aiming at the elimination of radiation exposure, this paper presents a novel methodology for the replacement of CT by a 3D laser scanner (radiation-free) for prosthesis modeling. The complete elimination of CT is based on an accurate determination of ribs position and prosthesis placement region through skin surface points. The developed solution resorts to a normalized and combined outcome of an artificial neural network (ANN) set. Each ANN model was trained with data vectors from 165 male patients and using soft tissue thicknesses (STT) comprising information from the skin and rib cage (automatically determined by image processing algorithms). Tests revealed that ribs position for prosthesis placement and modeling can be estimated with an average error of 5.0 ± 3.6 mm. One also showed that the ANN performance can be improved by introducing a manually determined initial STT value in the ANN normalization procedure (average error of 2.82 ± 0.76 mm). Such error range is well below current prosthesis manual modeling (approximately 11 mm), which can provide a valuable and radiation-free procedure for prosthesis personalization.
Resumo:
Pectus excavatum is the most common deformity of the thorax and usually comprises Computed Tomography (CT) examination for pre-operative diagnosis. Aiming at the elimination of the high amounts of CT radiation exposure, this work presents a new methodology for the replacement of CT by a laser scanner (radiation-free) in the treatment of pectus excavatum using personally modeled prosthesis. The complete elimination of CT involves the determination of ribs external outline, at the maximum sternum depression point for prosthesis placement, based on chest wall skin surface information, acquired by a laser scanner. The developed solution resorts to artificial neural networks trained with data vectors from 165 patients. Scaled Conjugate Gradient, Levenberg-Marquardt, Resilient Back propagation and One Step Secant gradient learning algorithms were used. The training procedure was performed using the soft tissue thicknesses, determined using image processing techniques that automatically segment the skin and rib cage. The developed solution was then used to determine the ribs outline in data from 20 patient scanners. Tests revealed that ribs position can be estimated with an average error of about 6.82±5.7 mm for the left and right side of the patient. Such an error range is well below current prosthesis manual modeling (11.7±4.01 mm) even without CT imagiology, indicating a considerable step forward towards CT replacement by a 3D scanner for prosthesis personalization.
Resumo:
This paper examines a series of strategic initiatives that have been undertaken by Tourism Queensland (TQ), a State Tourism Organization in Australia, to develop tourism and in particular to develop networks in tourism destinations. This paper firstly examines the nature of sustainable urban tourism (SUT) and discusses approaches to defining it. It suggests that developing SUT requires a generic approach to improving sustainable tourism operations amongst all suppliers in an urban area. Further, this approach suggests that best practice in marketing and policy development can be adopted to attract tourists to a SUT destination and examples of this approach are provided.
Resumo:
This study demonstrates and applies a social network methodology for studying the dynamics of hierarchies in organizations. Social network (blockmodel) analysis of verbal networks in four hospitals contrasted hierarchical and structurally equivalent partitions of the sociomatrices of frequent ties and perceptions of organizational culture. It was found that the verbal networks in these organizations follow a center periphery pattern rather than a hierarchical logic and that perceptions of culture vary more by verbal network than by formal hierarchy. The perceptions of culture of central groups in one organization are much like those of peripheral groups in another. In all four hospitals, structurally equivalent social networks are more important in predicting subcultures than are hierarchical groupings and hierarchy has a limited impact on the development of verbal networks. These findings suggest the value of an amoeba rather than a pyramid metaphor in interpreting the cultures and relational structures of organizations.
Resumo:
This paper presents a new generalized solution for DC bus capacitors voltage balancing in back-to-back m level diode-clamped multilevel converters connecting AC networks. The solution is based on the DC bus average power flow and exploits the switching configuration redundancies. The proposed balancing solution is particularized for the back-to-back multilevel structure with m=5 levels. This back-to-back converter is studied working with bidirectional power flow, connecting an induction machine to the power grid.
Resumo:
Collaborative networks are typically formed by heterogeneous and autonomous entities, and thus it is natural that each member has its own set of core-values. Since these values somehow drive the behaviour of the involved entities, the ability to quickly identify partners with compatible or common core-values represents an important element for the success of collaborative networks. However, tools to assess or measure the level of alignment of core-values are lacking. Since the concept of 'alignment' in this context is still ill-defined and shows a multifaceted nature, three perspectives are discussed. The first one uses a causal maps approach in order to capture, structure, and represent the influence relationships among core-values. This representation provides the basis to measure the alignment in terms of the structural similarity and influence among value systems. The second perspective considers the compatibility and incompatibility among core-values in order to define the alignment level. Under this perspective we propose a fuzzy inference system to estimate the alignment level, since this approach allows dealing with variables that are vaguely defined, and whose inter-relationships are difficult to define. Another advantage provided by this method is the possibility to incorporate expert human judgment in the definition of the alignment level. The last perspective uses a belief Bayesian network method, and was selected in order to assess the alignment level based on members' past behaviour. An example of application is presented where the details of each method are discussed.
Resumo:
In this paper we describe a casestudy of an experiment on how reflexivity and technology can enhance learning, by using ePorfolios as a training environment to develop translation skills. Translation is today a multiskilled job and translators need to assure their clients a good performance and quality, both in language and in technology domains. In order to accomplish it, for the translator all the tasks and processes he develops appear as crucial, being pretranslation and posttranslation processes equally important as the translation itself, namely as far as autonomy, reflexive and critical skills are concerned. Finally, the need and relevance for collaborative tasks and networks amongst virtual translation communities, led us to the decision of implementing ePortfolios as a tool to develop the requested skills and extend the use of Internet in translation, namely in terminology management phases, for the completion of each task, by helping students in the management of the projects deadlines, improving their knowledge on the construction and management of translation resources and deepening their awareness about the concepts related to the development and usability of ePorfolios.
Resumo:
Integrated manufacturing constitutes a complex system made of heterogeneous information and control subsystems. Those subsystems are not designed to the cooperation. Typically each subsystem automates specific processes, and establishes closed application domains, therefore it is very difficult to integrate it with other subsystems in order to respond to the needed process dynamics. Furthermore, to cope with ever growing marketcompetition and demands, it is necessary for manufacturing/enterprise systems to increase their responsiveness based on up-to-date knowledge and in-time data gathered from the diverse information and control systems. These have created new challenges for manufacturing sector, and even bigger challenges for collaborative manufacturing. The growing complexity of the information and communication technologies when coping with innovative business services based on collaborative contributions from multiple stakeholders, requires novel and multidisciplinary approaches. Service orientation is a strategic approach to deal with such complexity, and various stakeholders' information systems. Services or more precisely the autonomous computational agents implementing the services, provide an architectural pattern able to cope with the needs of integrated and distributed collaborative solutions. This paper proposes a service-oriented framework, aiming to support a virtual organizations breeding environment that is the basis for establishing short or long term goal-oriented virtual organizations. The notion of integrated business services, where customers receive some value developed through the contribution from a network of companies is a key element.
Resumo:
This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.
Resumo:
This work describes a methodology to extract symbolic rules from trained neural networks. In our approach, patterns on the network are codified using formulas on a Lukasiewicz logic. For this we take advantage of the fact that every connective in this multi-valued logic can be evaluated by a neuron in an artificial network having, by activation function the identity truncated to zero and one. This fact simplifies symbolic rule extraction and allows the easy injection of formulas into a network architecture. We trained this type of neural network using a back-propagation algorithm based on Levenderg-Marquardt algorithm, where in each learning iteration, we restricted the knowledge dissemination in the network structure. This makes the descriptive power of produced neural networks similar to the descriptive power of Lukasiewicz logic language, minimizing the information loss on the translation between connectionist and symbolic structures. To avoid redundance on the generated network, the method simplifies them in a pruning phase, using the "Optimal Brain Surgeon" algorithm. We tested this method on the task of finding the formula used on the generation of a given truth table. For real data tests, we selected the Mushrooms data set, available on the UCI Machine Learning Repository.