861 resultados para Network-based analysis


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Computational network analysis provides new methods to analyze the brain's structural organization based on diffusion imaging tractography data. Networks are characterized by global and local metrics that have recently given promising insights into diagnosis and the further understanding of psychiatric and neurologic disorders. Most of these metrics are based on the idea that information in a network flows along the shortest paths. In contrast to this notion, communicability is a broader measure of connectivity which assumes that information could flow along all possible paths between two nodes. In our work, the features of network metrics related to communicability were explored for the first time in the healthy structural brain network. In addition, the sensitivity of such metrics was analysed using simulated lesions to specific nodes and network connections. Results showed advantages of communicability over conventional metrics in detecting densely connected nodes as well as subsets of nodes vulnerable to lesions. In addition, communicability centrality was shown to be widely affected by the lesions and the changes were negatively correlated with the distance from lesion site. In summary, our analysis suggests that communicability metrics that may provide an insight into the integrative properties of the structural brain network and that these metrics may be useful for the analysis of brain networks in the presence of lesions. Nevertheless, the interpretation of communicability is not straightforward; hence these metrics should be used as a supplement to the more standard connectivity network metrics.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The brain is a complex neural network with a hierarchical organization and the mapping of its elements and connections is an important step towards the understanding of its function. Recent developments in diffusion-weighted imaging have provided the opportunity to reconstruct the whole-brain structural network in-vivo at a large scale level and to study the brain structural substrate in a framework that is close to the current understanding of brain function. However, methods to construct the connectome are still under development and they should be carefully evaluated. To this end, the first two studies included in my thesis aimed at improving the analytical tools specific to the methodology of brain structural networks. The first of these papers assessed the repeatability of the most common global and local network metrics used in literature to characterize the connectome, while in the second paper the validity of further metrics based on the concept of communicability was evaluated. Communicability is a broader measure of connectivity which accounts also for parallel and indirect connections. These additional paths may be important for reorganizational mechanisms in the presence of lesions as well as to enhance integration in the network. These studies showed good to excellent repeatability of global network metrics when the same methodological pipeline was applied, but more variability was detected when considering local network metrics or when using different thresholding strategies. In addition, communicability metrics have been found to add some insight into the integration properties of the network by detecting subsets of nodes that were highly interconnected or vulnerable to lesions. The other two studies used methods based on diffusion-weighted imaging to obtain knowledge concerning the relationship between functional and structural connectivity and about the etiology of schizophrenia. The third study integrated functional oscillations measured using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) as well as diffusion-weighted imaging data. The multimodal approach that was applied revealed a positive relationship between individual fluctuations of the EEG alpha-frequency and diffusion properties of specific connections of two resting-state networks. Finally, in the fourth study diffusion-weighted imaging was used to probe for a relationship between the underlying white matter tissue structure and season of birth in schizophrenia patients. The results are in line with the neurodevelopmental hypothesis of early pathological mechanisms as the origin of schizophrenia. The different analytical approaches selected in these studies also provide arguments for discussion of the current limitations in the analysis of brain structural networks. To sum up, the first studies presented in this thesis illustrated the potential of brain structural network analysis to provide useful information on features of brain functional segregation and integration using reliable network metrics. In the other two studies alternative approaches were presented. The common discussion of the four studies enabled us to highlight the benefits and possibilities for the analysis of the connectome as well as some current limitations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Increasing antibiotic resistance among uropathogenic Escherichia coli (UPEC) is driving interest in therapeutic targeting of nonconserved virulence factor (VF) genes. The ability to formulate efficacious combinations of antivirulence agents requires an improved understanding of how UPEC deploy these genes. To identify clinically relevant VF combinations, we applied contemporary network analysis and biclustering algorithms to VF profiles from a large, previously characterized inpatient clinical cohort. These mathematical approaches identified four stereotypical VF combinations with distinctive relationships to antibiotic resistance and patient sex that are independent of traditional phylogenetic grouping. Targeting resistance- or sex-associated VFs based upon these contemporary mathematical approaches may facilitate individualized anti-infective therapies and identify synergistic VF combinations in bacterial pathogens.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Public Private Partnerships (PPPs) are mostly implemented to circumvent budgetary constraints, and to encourage efficiency and quality in the provision of public infrastructure in order to reach social welfare. One of the ways of reaching the latter objective is by the introduction of performance based standards tied to bonuses and penalties to reward or punish the performance of the contractor. This paper focuses on the implementation of safety based incentives in PPPs in such a way that the better the safety outcome the greater larger will be the economic reward to the contractor. The main aim of this paper is to identify whether the incentives to improve road safety in PPPs are ultimately effective in improving safety ratios in Spain. To that end, Poisson and negative binomial regression models have been applied using information of motorways of the Spanish network of 2006. The findings indicate that even though road safety is highly influenced by variables that are not much controllable by the contractor such as the Average Annual Daily Traffic and the percentage of heavy vehicles, the implementation of safety incentives in PPPs has a positive influence in the reduction of fatalities, injuries and accidents.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Critical infrastructures support everyday activities in modern societies, facilitating the exchange of services and quantities of various nature. Their functioning is the result of the integration of diverse technologies, systems and organizations into a complex network of interconnections. Benefits from networking are accompanied by new threats and risks. In particular, because of the increased interdependency, disturbances and failures may propagate and render unstable the whole infrastructure network. This paper presents a methodology of resilience analysis of networked systems of systems. Resilience generalizes the concept of stability of a system around a state of equilibrium, with respect to a disturbance and its ability of preventing, resisting and recovery. The methodology provides a tool for the analysis of off-equilibrium conditions that may occur in a single system and propagate through the network of dependencies. The analysis is conducted in two stages. The first stage of the analysis is qualitative. It identifies the resilience scenarios, i.e. the sequence of events, triggered by an initial disturbance, which include failures and the system response. The second stage is quantitative. The most critical scenarios can be simulated, for the desired parameter settings, in order to check if they are successfully handled, i.e recovered to nominal conditions, or they end into the network failure. The proposed methodology aims at providing an effective support to resilience-informed design.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, we describe hubs organization within the olfactory network with Functional Magnetic Resonance Imaging (fMRI). Granger causality analyses were applied in the supposed regions of interest (ROIs) involved in olfactory tasks, as described in [1]. We aim to get deeper knowledge about the hierarchy of the regions within the olfactory network and to describe which of these regions, in terms of strength of the connectivity, impair in different types of anosmia.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Seepage flow measurement is an important behavior indicator when providing information about dam performance. The main objective of this study is to analyze seepage by means of an artificial neural network model. The model is trained and validated with data measured at a case study. The dam behavior towards different water level changes is reproduced by the model and a hysteresis phenomenon detected and studied. Artificial neural network models are shown to be a powerful tool for predicting and understanding seepage phenomenon.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis is the result of a project whose objective has been to develop and deploy a dashboard for sentiment analysis of football in Twitter based on web components and D3.js. To do so, a visualisation server has been developed in order to present the data obtained from Twitter and analysed with Senpy. This visualisation server has been developed with Polymer web components and D3.js. Data mining has been done with a pipeline between Twitter, Senpy and ElasticSearch. Luigi have been used in this process because helps building complex pipelines of batch jobs, so it has analysed all tweets and stored them in ElasticSearch. To continue, D3.js has been used to create interactive widgets that make data easily accessible, this widgets will allow the user to interact with them and �filter the most interesting data for him. Polymer web components have been used to make this dashboard according to Google's material design and be able to show dynamic data in widgets. As a result, this project will allow an extensive analysis of the social network, pointing out the influence of players and teams and the emotions and sentiments that emerge in a lapse of time.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In today's internet world, web browsers are an integral part of our day-to-day activities. Therefore, web browser security is a serious concern for all of us. Browsers can be breached in different ways. Because of the over privileged access, extensions are responsible for many security issues. Browser vendors try to keep safe extensions in their official extension galleries. However, their security control measures are not always effective and adequate. The distribution of unsafe extensions through different social engineering techniques is also a very common practice. Therefore, before installation, users should thoroughly analyze the security of browser extensions. Extensions are not only available for desktop browsers, but many mobile browsers, for example, Firefox for Android and UC browser for Android, are also furnished with extension features. Mobile devices have various resource constraints in terms of computational capabilities, power, network bandwidth, etc. Hence, conventional extension security analysis techniques cannot be efficiently used by end users to examine mobile browser extension security issues. To overcome the inadequacies of the existing approaches, we propose CLOUBEX, a CLOUd-based security analysis framework for both desktop and mobile Browser EXtensions. This framework uses a client-server architecture model. In this framework, compute-intensive security analysis tasks are generally executed in a high-speed computing server hosted in a cloud environment. CLOUBEX is also enriched with a number of essential features, such as client-side analysis, requirements-driven analysis, high performance, and dynamic decision making. At present, the Firefox extension ecosystem is most susceptible to different security attacks. Hence, the framework is implemented for the security analysis of the Firefox desktop and Firefox for Android mobile browser extensions. A static taint analysis is used to identify malicious information flows in the Firefox extensions. In CLOUBEX, there are three analysis modes. A dynamic decision making algorithm assists us to select the best option based on some important parameters, such as the processing speed of a client device and network connection speed. Using the best analysis mode, performance and power consumption are improved significantly. In the future, this framework can be leveraged for the security analysis of other desktop and mobile browser extensions, too.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

By switching the level of analysis and aggregating data from the micro-level of individual cases to the macro-level, quantitative data can be analysed within a more case-based approach. This paper presents such an approach in two steps: In a first step, it discusses the combination of Social Network Analysis (SNA) and Qualitative Comparative Analysis (QCA) in a sequential mixed-methods research design. In such a design, quantitative social network data on individual cases and their relations at the micro-level are used to describe the structure of the network that these cases constitute at the macro-level. Different network structures can then be compared by QCA. This strategy allows adding an element of potential causal explanation to SNA, while SNA-indicators allow for a systematic description of the cases to be compared by QCA. Because mixing methods can be a promising, but also a risky endeavour, the methodological part also discusses the possibility that underlying assumptions of both methods could clash. In a second step, the research design presented beforehand is applied to an empirical study of policy network structures in Swiss politics. Through a comparison of 11 policy networks, causal paths that lead to a conflictual or consensual policy network structure are identified and discussed. The analysis reveals that different theoretical factors matter and that multiple conjunctural causation is at work. Based on both the methodological discussion and the empirical application, it appears that a combination of SNA and QCA can represent a helpful methodological design for social science research and a possibility of using quantitative data with a more case-based approach.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06