956 resultados para Network Modelling
Resumo:
Document de sÃntesi d'aquest estudi que analitza -seguint una metodologia quantitativa basada en una mostra representativa de 2.093 professors i 23.864 estudiants i reforçada amb elements qualitatius- la transició que es produeix en el sistema universitari públic català cap a un model més adaptat a les noves necessitats de la societat xarxa. Per a això, es posa especial èmfasi en l'anà lisi dels usos que es fa d'Internet (l'eina clau de la societat xarxa) en el món universitari i en les transformacions que es donen o es donaran com a conseqüència d'aquests usos.
Resumo:
It can be assumed that the composition of Mercury’s thin gas envelope (exosphere) is related to thecomposition of the planets crustal materials. If this relationship is true, then inferences regarding the bulkchemistry of the planet might be made from a thorough exospheric study. The most vexing of allunsolved problems is the uncertainty in the source of each component. Historically, it has been believedthat H and He come primarily from the solar wind, while Na and K originate from volatilized materialspartitioned between Mercury’s crust and meteoritic impactors. The processes that eject atoms andmolecules into the exosphere of Mercury are generally considered to be thermal vaporization, photonstimulateddesorption (PSD), impact vaporization, and ion sputtering. Each of these processes has its owntemporal and spatial dependence. The exosphere is strongly influenced by Mercury’s highly ellipticalorbit and rapid orbital speed. As a consequence the surface undergoes large fluctuations in temperatureand experiences differences of insolation with longitude. We will discuss these processes but focus moreon the expected surface composition and solar wind particle sputtering which releases material like Caand other elements from the surface minerals and discuss the relevance of composition modelling
Resumo:
The main objective of this paper aims at developing a methodology that takes into account the human factor extracted from the data base used by the recommender systems, and which allow to resolve the specific problems of prediction and recommendation. In this work, we propose to extract the user's human values scale from the data base of the users, to improve their suitability in open environments, such as the recommender systems. For this purpose, the methodology is applied with the data of the user after interacting with the system. The methodology is exemplified with a case study
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
In the B-ISDN there is a provision for four classes of services, all of them supported by a single transport network (the ATM network). Three of these services, the connected oriented (CO) ones, permit connection access control (CAC) but the fourth, the connectionless oriented (CLO) one, does not. Therefore, when CLO service and CO services have to share the same ATM link, a conflict may arise. This is because a bandwidth allocation to obtain maximum statistical gain can damage the contracted ATM quality of service (QOS); and vice versa, in order to guarantee the contracted QOS, the statistical gain have to be sacrificed. The paper presents a performance evaluation study of the influence of the CLO service on a CO service (a circuit emulation service or a variable bit-rate service) when sharing the same link
Resumo:
Climate change has created the need for new strategies in conservation planning that account for the dynamics of factors threatening endangered species. Here we assessed climate change threat to the European otter, a flagship species for freshwater ecosystems, considering how current conservation areas will perform in preserving the species in a climatically changed future. We used an ensemble forecasting approach considering six modelling techniques applied to eleven subsets of otter occurrences across Europe. We performed a pseudo-independent and an internal evaluation of predictions. Future projections of species distribution were made considering the A2 and B2 scenarios for 2080 across three climate models: CCCMA-CGCM2, CSIRO-MK2 and HCCPR HAD-CM3. The current and the predicted otter distributions were used to identify priority areas for the conservation of the species, and overlapped to existing network of protected areas. Our projections show that climate change may profoundly reshuffle the otter's potential distribution in Europe, with important differences between the two scenarios we considered. Overall, the priority areas for conservation of the otter in Europe appear to be unevenly covered by the existing network of protected areas, with the current conservation efforts being insufficient in most cases. For a better conservation, the existing protected areas should be integrated within a more general conservation and management strategy incorporating climate change projections. Due to the important role that the otter plays for freshwater habitats, our study further highlights the potential sensitivity of freshwater habitats in Europe to climate change.
Resumo:
BACKGROUND: European Surveillance of Congenital Anomalies (EUROCAT) is a network of population-based congenital anomaly registries in Europe surveying more than 1 million births per year, or 25% of the births in the European Union. This paper describes the potential of the EUROCAT collaboration for pharmacoepidemiology and drug safety surveillance. METHODS: The 34 full members and 6 associate members of the EUROCAT network were sent a questionnaire about their data sources on drug exposure and on drug coding. Available data on drug exposure during the first trimester available in the central EUROCAT database for the years 1996-2000 was summarised for 15 out of 25 responding full members. RESULTS: Of the 40 registries, 29 returned questionnaires (25 full and 4 associate members). Four of these registries do not collect data on maternal drug use. Of the full members, 15 registries use the EUROCAT drug code, 4 use the international ATC drug code, 3 registries use another coding system and 7 use a combination of these coding systems. Obstetric records are the most frequently used sources of drug information for the registries, followed by interviews with the mother. Only one registry uses pharmacy data. Percentages of cases with drug exposure (excluding vitamins/minerals) varied from 4.4% to 26.0% among different registries. The categories of drugs recorded varied widely between registries. CONCLUSIONS: Practices vary widely between registries regarding recording drug exposure information. EUROCAT has the potential to be an effective collaborative framework to contribute to post-marketing drug surveillance in relation to teratogenic effects, but work is needed to implement ATC drug coding more widely, and to diversify the sources of information used to determine drug exposure in each registry.
Resumo:
En aquest article es resumeixen els resultats publicats en un informe de l' ISS (Istituto Superiore di Sanità ) del desembre de 2006, sobre un model matemà tic desenvolupat per un grup de treball que inclou a investigadors de les Universitats de Trento, Pisa i Roma, i els Instituts Nacionals de Salut (Istituto Superiore di Sanità , ISS), per avaluar i mesurar l'impacte de la transmissió i el control de la pandèmia de grip
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
The design of control, estimation or diagnosis algorithms most often assumes that all available process variables represent the system state at the same instant of time. However, this is never true in current network systems, because of the unknown deterministic or stochastic transmission delays introduced by the communication network. During the diagnosing stage, this will often generate false alarms. Under nominal operation, the different transmission delays associated with the variables that appear in the computation form produce discrepancies of the residuals from zero. A technique aiming at the minimisation of the resulting false alarms rate, that is based on the explicit modelling of communication delays and on their best-case estimation is proposed
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
The identification of compositional changes in fumarolic gases of active and quiescent volcanoes is one of the mostimportant targets in monitoring programs. From a general point of view, many systematic (often cyclic) and randomprocesses control the chemistry of gas discharges, making difficult to produce a convincing mathematical-statisticalmodelling.Changes in the chemical composition of volcanic gases sampled at Vulcano Island (Aeolian Arc, Sicily, Italy) fromeight different fumaroles located in the northern sector of the summit crater (La Fossa) have been analysed byconsidering their dependence from time in the period 2000-2007. Each intermediate chemical composition has beenconsidered as potentially derived from the contribution of the two temporal extremes represented by the 2000 and 2007samples, respectively, by using inverse modelling methodologies for compositional data. Data pertaining to fumarolesF5 and F27, located on the rim and in the inner part of La Fossa crater, respectively, have been used to achieve theproposed aim. The statistical approach has allowed us to highlight the presence of random and not random fluctuations,features useful to understand how the volcanic system works, opening new perspectives in sampling strategies and inthe evaluation of the natural risk related to a quiescent volcano
Resumo:
BACKGROUND The study of the attentional system remains a challenge for current neuroscience. The "Attention Network Test" (ANT) was designed to study simultaneously three different attentional networks (alerting, orienting, and executive) based in subtraction of different experimental conditions. However, some studies recommend caution with these calculations due to the interactions between the attentional networks. In particular, it is highly relevant that several interpretations about attentional impairment have arisen from these calculations in diverse pathologies. Event related potentials (ERPs) and neural source analysis can be applied to disentangle the relationships between these attentional networks not specifically shown by behavioral measures. RESULTS This study shows that there is a basic level of alerting (tonic alerting) in the no cue (NC) condition, represented by a slow negative trend in the ERP trace prior to the onset of the target stimuli. A progressive increase in the CNV amplitude related to the amount of information provided by the cue conditions is also shown. Neural source analysis reveals specific modulations of the CNV related to a task-related expectancy presented in the NC condition; a late modulation triggered by the central cue (CC) condition and probably representing a generic motor preparation; and an early and late modulation for spatial cue (SC) condition suggesting specific motor and sensory preactivation. Finally, the first component in the information processing of the target stimuli modulated by the interaction between orienting network and the executive system can be represented by N1. CONCLUSIONS The ANT is useful as a paradigm to study specific attentional mechanisms and their interactions. However, calculation of network effects is based in subtractions with non-comparable experimental conditions, as evidenced by the present data, which can induce misinterpretations in the study of the attentional capacity in human subjects.
Resumo:
A four compartment model of the cardiovascular system is developed. To allow for easy interpretation and to minimise the number of parameters, an effort was made to keep the model as simple as possible. A sensitivity analysis is first carried out to determine which are the most important model parameters to characterise the blood pressure signal. A four stage process is then described which accurately determines all parameter values. This process is applied to data from three patients and good agreement is shown in all cases.
Resumo:
I use a multi-layer feedforward perceptron, with backpropagation learning implemented via stochastic gradient descent, to extrapolate the volatility smile of Euribor derivatives over low-strikes by training the network on parametric prices.