954 resultados para Near Wake


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the 'snow-sea ice-seawater' continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (Hg(T)) concentrations varied from 0.63 to 2.76 pmol/L with 'transient-type' vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean Hg(T) concentrations (1.35 ± 0.39 pmol/L) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol/L). Labile Hg (Hg(R)) concentrations varied from 0.01 to 2.28 pmol/L, with a distribution showing that the Hg(T) enrichment south of the SPF consisted mainly of Hg(R) (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHg(T)) concentrations ranged from 0.02 to 0.86 pmol/L. All vertical MeHg(T) profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for Hg(T), low mean MeHg(T) concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHg(T) concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHg(T) vs Apparent Oxygen Utilization (AOU) relationship (p <0.001). The proportion of Hg(T) as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station Hg(T) and Hg(R) concentrations found in the 'snow-sea ice-seawater' continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of Hg(T) there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHg(T) concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol/L. The MeHg(T) vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas Hg(T) concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010; doi:10.1021/es903839n), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An intense diatom bloom developed within a strong meridional silicic acid gradient across the Antarctic Polar Front at 61°S, 170°W following stratification of the water column in late October/early November 1997. The region of high diatom biomass and the silicic acid gradient propogated southward across the Seasonal Ice Zone through time, with the maximum diatom biomass tracking the center of the silicic acid gradient. High diatom biomass and high rates of silica production persisted within the silicic acid gradient until the end of January 1998 (ca. 70 d) driving the gradient over 500 km to the south of its original position at the Polar Front. The bloom consumed 30 to >40 µM Si(OH)4 in the euphotic zone between about 60 and 66°S leaving near surface concentrations <2.5 µM and occasionally <1.0 µM in its wake. Integrated biogenic silica concentrations within the bloom averaged 410 mmol Si/m**2 (range 162-793 mmol Si/m**2). Average integrated silica production on two consecutive cruises in December 1997 and January 1998 that sampled the bloom while it was well developed were 27.5±6.9 and 22.6±20 mmol Si/m**2/d, respectively. Those levels of siliceous biomass and silica production are similar in magnitude to those reported for ice-edge diatom blooms in the Ross Sea, Antarctica, which is considered to be among the most productive regions in the Southern Ocean. Net silica production (production minus dissolution) in surface waters during the bloom was 16-21 mmol Si/m**2/d, which is sufficient for diatom growth to be the cause of the southward displacement of the silicic acid gradient. A strong seasonal change in silica dissolution : silica production rate ratios was observed. Integrated silica dissolution rates in the upper 100-150 m during the low biomass period before stratification averaged 64% of integrated production. During the bloom integrated dissolution rates averaged only 23% of integrated silica production, making 77% of the opal produced available for export to depth. The bloom ended in late January apparently due to a mixing event. Dissolution : production rate ratios increased to an average of 0.67 during that period indicating a return to a predominantly regenerative system. Our observations indicate that high diatom biomass and high silica production rates previously observed in the marginal seas around Antarctica also occur in the deep ocean near the Polar Front. The bloom we observed propagated across the latitudinal band overlying the sedimentary opal belt which encircles most of Antarctica implying a role for such blooms in the formation of those sediments. Comparison of our surface silica production rates with new estimates of opal accumulation rates in the abyssal sediments of the Southern Ocean, which have been corrected for sediment focusing, indicate a burial efficiency of <=4.6% for biogenic silica. That efficiency is considerably lower than previous estimates for the Southern Ocean.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Qualitative and quantitative food composition, as well as intensity of feeding of beryx-alfonsino Beryx splendens was examined on banks near the Azores. Data are presented with respect to size groups and taking into account type of feeding of males and females. Crustaceans and fishes were constituents of their feeding ration. A tendency toward increase in the number of consumed fishes in the course of ontogenetic development of beryx-alfonsino was noted. Beryx-alfonsino was shown to occupy the trophic level of consumers of the third order performing function of a deep-water predator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution patterns of gold, platinum group metals (PGE), and volatile components are studied in the main rock types of the Mid-Atlantic Ridge lithosphere (ultrabasites, gabbro, and basalts) from the transform fracture zone at 15°20'N. It is ascertained that PGE content depends on the reduction degree of fluids, on rock types, and on their formation conditions. It is noted that concentrations of refractory elements (Os, Ir, Rh) decrease, while those of fusible elements (Pt, Pd, Au) increase with depth. The chondrite type of distribution is only noted in the ultrabasite rocks. Increase in water and CO2 contents and in oxidation degree of fluids occurs with transition from basalts to ultrabasites, as well as from normal magmatic systems to fluid-enriched anomalous systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemistry of snow and ice cores from Svalbard is influenced by variations in local sea ice margin and distance to open water. Snow pits sampled at two summits of Vestfonna ice cap (Nordaustlandet, Svalbard), exhibit spatially heterogeneous soluble ions concentrations despite similar accumulation rates, reflecting the importance of small-scale weather patterns on this island ice cap. The snow pack on the western summit shows higher average values of marine ions and a winter snow layer that is relatively depleted in sulphate. One part of the winter snow pack exhibits a [SO4-/Na+] ratio reduced by two thirds compared with its ratio in sea water. This low sulphate content in winter snow is interpreted as the signature of frost flowers, which are formed on young sea ice when offshore winds predominate. Frost flowers have been described as the dominant source of sea salt to aerosol and precipitation in ice cores in coastal Antarctica but this is the first time their chemical signal has been described in the Arctic. The eastern summit does not show any frost flower signature and we interpret the unusually dynamic ice transport and rapid formation of thin ice on the Hinlopen Strait as the source of the frost flowers.