949 resultados para Natural Product Synthesis, Imidazole, regioselective
Resumo:
The effects of N (NaNO3) and C (NaAc) source in medium on the expression of tumor necrosis factor-alpha (TNF-alpha) gene in transgenic Anabaena sp. PCC 7120 were compared. The data showed that N source stabilized the expression of foreign protein and C source altered the synthesis of cell walls. Comparing several methods for breaking the cells, supersonic was able to extract TNF-alpha better than others. For purification of TNF-alpha, transgenic Anabaena cells were broken, the extracts were precipitated with ammonia sulfate, and the impure TNF-alpha was eluted from DEAE ion exchange chromatography. Electrophoresis (PAGE-SDS) showed a single band at 17 kD position.
Resumo:
Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator and has been proved to be an effective target for the treatment of type 2 diabetes mellitus. Bis-(2,3-dibromo-4,5-dihydroxyphenyl)-methane 7 was first reported as a natural bromophenol with significant inhibition against PTP1B which was isolated from red algae Rhodomela confervoides. Intrigued by its astonishing activity (IC50 = 2.4 mu mol/L), compound 7 was synthesized with the overall yield of 24% and evaluated for its PTP1B inhibitory activity compared with natural compound. (C) 2008 Li Jun Han. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
Resumo:
Nickel tungstate (NiWO4) nano-particles were successfully synthesized at low temperatures by a molten salt method, and characterized by Xray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet visible spectra techniques (UV-vis), respectively. The effects of calcining temperature and salt quantity on the crystallization and development of NiWO4 crystallites were studied. Experimental results showed that the well-crystallized NiWO4 nano-particles with about 30 nm in diameter could be prepared at 270 degrees C with 6:1 mass ratio of the salt to NiWO4 precursor. XRD analysis confirmed that the product was a pure monoclinic phase of NiWO4 with wolframite structure. UV-vis spectrum revealed that NiWO4 nano-particles had good light absorption properties in both ultraviolet and visible light region. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
An industrial scale dehydration process based on hollow fiber membranes for lowering the dew point of natural gas is described in this paper. A pilot test with the feed flux scale of 12x10(4) Nm(3)/d was carried out. Dew points of -8 degreesC-13 degreesC at a gas transport pressure in the pipeline of 4.6M Pa and methane recovery of more than 98% were attained. The water vapor content of the product gas could be maintained around 0.01 vol% during a continuous run of about 700 hours. The effects of feed flux and operation pressure on methane recovery and water vapor content were also investigated. Additionally, some auxiliary technologies, such as a full-time engine using natural gas as fuel and the utilization of vent gas in the process, are also discussed. A small amount of the vent gas from the system was used as a fuel for an engine to drive vacuum pumps, and the heat expelled from the engine was used to warm up the natural gas feed. The whole system can be operated in a self-sustainable manner from an energy point of view, and has a relatively high efficiency in the utilization of natural gas.
Resumo:
With the combined use of glycosyl trichloroacetimidates and thioglycosides, a group of natural diosgenyl saponins (1-6) are efficiently synthesized, in either a stepwise or a 'one-pot' manner. The trichloroacetimidate is employed as an efficient temporary hydroxy protecting group in glycosylation with the glycosyl trichloroacetimidate. The intermolecular alkylthio-group transfer is demonstrated to be a common side-reaction during glycosylation with thioglycosides.
Resumo:
In this study, amorphous silica-alumina nanomaterials with narrow mesoporous distribution can be obtained by two novel sol-gel processes, without the use of any templates. The results of our experiments show that the preparation method has a great influence on the precursor sol structure as well as the specific surface area and mesopore volume of the final product, but has no effect on the pore size distribution.
Resumo:
A Cu-Zn-Al methanol catalyst combined with HZSM-5 was used for dimethyl ether (DME) synthesis from a syngas containing nitrogen, which was produced by air-partial oxidation of methane (air-POM). Air-POM occurred at 850 degreesC, 0.8 MPa, CH4/air/H2O/CO2 ratio of 1/2.4/0.8/0.4 over a Ni-based catalyst modified by magnesia and lanthanum oxide with 96% CH4 conversion and constantly gave syngas with a H-2/CO ratio of 2/1 during a period of 450 h. The obtained N-2-containing syngas was used directly for DME synthesis. About 90% CO per-pass conversion, 78% DME selectivity and 70% DME yield could be achieved during 450 h stability testing under the pressure of 5.0 MPa. the temperature of 240 degreesC and the space velocity of 1000 h(-1). (C) 2002 Elsevier Science B. V. All rights reserved.
Resumo:
Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.
Resumo:
A group of natural diosgenyl saponins was synthesized in a highly efficient manner employing the 'one-pot sequential glycosylation' protocol with the combined use of glycosyl trichloroacetimidates and thioglycosides. (C) 1999 Elsevier Science Ltd. All rights reserved.