963 resultados para Nanowire electrodes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective was to study the treatment of wastewater generated by the oil industry. This work consisted of tests of electroflocculation with alternate current (AC), and chemical coagulation. The removal efficiencies of organic load were evaluated by the removal of oils and greases, color and turbidity. The parameters investigated were the change in alternate current frequency, the initial pH, the distance between electrodes, the applied potential and time lapse. From the results, one may conclude that the electroflocculation process is potential applicability to the effluent studied, while chemical coagulation was not successful.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proton exchange membrane fuel cell (PEMFC) requires membrane electrode assemblies (MEA) to generate electrical energy from hydrogen and oxygen. In this study a MEA production process by sieve printing and an ink composition were developed to produce catalyst layers of MEAs. The deposition of the exact catalyst content was possible on cathodes and anodes with only one print step. The optimal ink developed shown viscosity of 2.75 Pa s, density 1.27 g cm-3, total solid content of 33.76 % and tack of 92 U.T. The electrodes prepared in only one printing step showed higher performance than those prepared in several steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new electroanalytical method coupling TLC-DPV in solid state was developed for quantitative determination of phytoantioxidants with medicinal purpose, e.g. rosmarinic acid (RA) in samples of phytopharmaceuticals, e.g. rosemary (Rosmarinus officinalis L.). The method showed to be feasible, presenting linearity in concentrations ranging from 0.694 x 10-3 to 9.526 x 10-3 mol L-1 (r = 0.9945), good sensibility, selectivity, reproducibility, repeatability, agility and affordable cost. The concentrations of RA in different extracts of rosemary ranged from 0.05 to 0.52 (% w/w), presenting high recovery levels when compared to HPLC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review reports the use of solid amalgam electrodes in the electroanalytical determination of organic and inorganic compounds. The different types of amalgam electrodes are presented, and attention is paid to solid amalgam electrode, and here is presented details about the pre-treatment for activation and renovation and also possible modifications in its surface. The wide potential range, higher signal-to-noise ratio, mechanical stability enabling their application in flowing systems, and principally their resistance toward passivation, indicate that the solid amalgam electrodes are environmentally friendly alternatives to mercury electrodes, without loss in the sensitivity and reproducibility in voltammetric responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The most relevant advances on analytical applications of ionic liquids (IL) as binder in the construction of electrochemical sensors and biosensors based on carbon paste are presented. This new class of solvents - the IL - has received great attention in electroanalytical researches due to the excellent physical and chemical properties of these materials, such as high conductivity, low toxicity, good stability, large electrochemical window and catalytic ability. Recently, the interest in electrodes modified with IL, especially when combined with metallic nanoparticles, has increased expressively due to improve the sensitivity and others advantages discussed in this review.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular metals are a new class of materials with promising applications and a unique combination of physical, chemical and mechanical properties. The Al-356 alloy is used to manufacture metal foams from NaCl preforms. Despite the usefulness of these materials, their performance may be affected by corrosion due to residual salt. This paper reports the study of the behavior of the Al-356 alloy in chloride solutions by electrochemical techniques in rotating disk electrode. The cathodic reaction of oxygen reduction is the crucial stage of process dissolution of the material, which shows that is the oxygen transport which limits the corrosion process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the electrolyte influence on deposition and dissolution processes of Cu nanoparticles on boron doped diamond electrodes (BDD). Morphological, structural and electrochemical analysis showed BDD films with good reproducibility, quality and reversible in a specific redox system. Electrodeposition of Cu nanoparticles on DDB electrodes in three different solutions was influenced by pH and ionic strength of the electrolytic medium. Analyzing the process as function of the scan rate, it was verified a better efficiency in 0,5 mol L-1 Na2SO4 solution. Under the influence of the pH and ionic strength, Cu nanoparticles on DDB may be obtained with different morphologies and it was important for defining the desired properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of analytical procedures to evaluate transesterification process is still a challenge in biodiesel production. Then, this paper shows an electroanalytical methodology to transesterification process assessment, proposing the application of nanostructured TiO2 electrodes. The results showed, for sunflower oil - methanol reaction catalyzed by KOH, a reduction peak in - 1050 mV and the gradual appearance of a second peak at - 1160 mV. This peak was observed as originated by the transesterification process and is probably related to intermediates. By measuring the intensity of this peak a kinetic profile was determined, showing that the conversion is almost finished in 2 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrocoagulation/flotation process was applied to treat biodiesel wastewater using aluminium electrodes. Firstly, a literature survey was conducted to choose the process variables and then, operational parameters including initial pH, electrode distance and reaction time were tested. Experimental results showed the best parameter that can be used in a factorial design for further studies. The results indicate that electrocoagulation/flotation is very efficient to reduce oil and grease, the effluent was very clear after treatment and small amount of sludge was produced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Significant functions in the Proton Exchange Membrane Fuel Cells (PEMFCs) rely on Gas Diffusion Layers (GDLs), such as control the water balance in the membrane electrode assembly (MEA), allow suitable gas permeability and porosity, etc. Aware of the GDL importance in the cell performance and its great demand in scale-up projects, the fuel cell research group at Instituto de Pesquisas Energéticas e Nucleares (IPEN) has developed a Sieve Printing method (innovative in Brazil) as a strategic solution for producing GDL and electrodes used in high power PEMFC stacks. The method has shown to be adequate to fabricate low cost electrodes, GDLs of different dimensions and to produce any amount of MEAs for power stacks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrochemical properties of micro and nano-electrodes are widely investigated due to their low faradaic and capacitive currents, leading to a new generation of smart and implantable devices. However, the current signals obtained in low-dimensional devices are strongly influenced by noise sources. In this paper, we show the evaluation of filters based on Fast Fourier Transform (FFT) and their implementation in a graphical user interface (GUI) in MATLAB®. As a case study, we evaluated an electrochemical reaction process of charge transfer via outer-sphere. Results showed successful removal of most of the noise in signals, thus proving a promising tool for low-scale measurement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical imprinting technology has been widely used as a valuable tool in selective recognition of a given target analyte (molecule or metal ion), yielding a notable advance in the development of new analytical protocols. Since their discovery, molecularly imprinted polymers (MIPs) have been extensively studied with excellent reviews published. However, studies involving ion imprinted polymers (IIPs), in which metal ions are recognized in the presence of closely related inorganic ions, remain scarce. Thus, this review involved a survey of different synthetic approaches for preparing ion imprinted adsorbents and their application for the development of solid phase extraction methods, metal ion sensors (electrodes and optodes) and selective membranes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A hydrometallurgical method for the recovery of rare earth metals, cobalt, nickel, iron, and manganese from the negative electrodes of spent Ni - MH mobile phone batteries was developed. The rare earth compounds were obtained by chemical precipitation at pH 1.5, with sodium cerium sulfate (NaCe(SO4)2.H2O) and lanthanum sulfate (La2(SO4)3.H2O) as the major recovered components. Iron was recovered as Fe(OH)3 and FeO. Manganese was obtained as Mn3O4.The recovered Ni(OH)2 and Co(OH)2 were subsequently used to synthesize LiCoO2, LiNiO2 and CoO, for use as cathodes in ion-Li batteries. The anodes and recycled materials were characterized by analytical techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, photoelectrochemical solar cells based on bismuth tungstate electrodes were evaluated. Bi2WO6 was synthesized by a hydrothermal method and characterized by scanning electron microscopy, UV-Vis reflectance spectroscopy, and X-ray powder diffraction. For comparison, solar cells based on TiO2 semiconductor electrodes were evaluated. Photoelectrochemical response of Grätzel-type solar cells based on these semiconductors and their corresponding sensitization with two inexpensive phthalocyanines dyes were determined. Bi2WO6-based solar cells presented higher values of photocurrent and efficiency than those obtained with TiO2 electrodes, even without sensitization. These results portray solar cells based on Bi2WO6 as promising devices for solar energy conversion owing to lower cost of production and ease of acquisition.