916 resultados para NF-KAPPA B AND LIPOPOLYSACCHARIDE
Resumo:
CCN2 (connective tissue growth factor (CTGF/CCN2)) is a matricellular protein that utilizes integrins to regulate cell proliferation, migration and survival. The loss of CCN2 leads to perinatal lethality resulting from a severe chondrodysplasia. Upon closer inspection of Ccn2 mutant mice, we observed defects in extracellular matrix (ECM) organization and hypothesized that the severe chondrodysplasia caused by loss of CCN2 might be associated with defective chondrocyte survival. Ccn2 mutant growth plate chondrocytes exhibited enlarged endoplasmic reticula (ER), suggesting cellular stress. Immunofluorescence analysis confirmed elevated stress in Ccn2 mutants, with reduced stress observed in Ccn2 overexpressing transgenic mice. In vitro studies revealed that Ccn2 is a stress responsive gene in chondrocytes. The elevated stress observed in Ccn2-/- chondrocytes is direct and mediated in part through integrin α5. The expression of the survival marker NFκB and components of the autophagy pathway were decreased in Ccn2 mutant growth plates, suggesting that CCN2 may be involved in mediating chondrocyte survival. These data demonstrate that absence of a matricellular protein can result in increased cellular stress and highlight a novel protective role for CCN2 in chondrocyte survival. The severe chondrodysplasia caused by the loss of CCN2 may be due to increased chondrocyte stress and defective activation of autophagy pathways, leading to decreased cellular survival. These effects may be mediated through nuclear factor κB (NFκB) as part of a CCN2/integrin/NFκB signaling cascade.
Resumo:
BACKGROUND This study evaluates the geographic expression pattern of Raf-1 Kinase Inhibitor Protein (RKIP) in colorectal cancer (CRC) in correlation with clinicopathological and molecular features, markers of epithelial-mesenchymal transition (EMT) and survival outcome. METHODS Whole-tissue sections of 220 well-characterised CRCs were immunostained for RKIP. NF-κB and E-Cadherin expression was assessed using a matched multi-punch tissue microarray. Analysis of mismatch repair (MMR) protein expression, B-Raf and KRAS mutations was performed. RKIP expression in normal mucosa, tumour centre, invasion front and tumour buds was each assessed for clinical relevance. RESULTS RKIP was diffusely expressed in normal mucosa and progressively lost towards tumour centre and front (P<0.0001). Only 0.9% of tumour buds were RKIP-positive. In the tumour centre, RKIP deficiency predicted metastatic disease (P=0.0307), vascular invasion (P=0.0506), tumour budding (P=0.0112) and an invasive border configuration (P=0.0084). Loss of RKIP correlated with NF-κB activation (P=0.0002) and loss of E-Cadherin (P<0.0001). Absence of RKIP was more common in MMR-deficient cancers (P=0.0191), while no impact of KRAS and B-Raf mutation was observed. RKIP in the tumour centre was identified as a strong prognostic indicator (HR (95% CI): 2.13 (1.27-3.56); P=0.0042) independently of TNM classification and therapy (P=0.0474). CONCLUSION The clinical relevance of RKIP expression as an independent prognostic factor is restricted to the tumour centre. Loss of RKIP predicts features of EMT and correlates with frequent distant metastasis.
Resumo:
The present study aimed to evaluate in vitro whether biomechanical loading modulates proinflammatory and bone remodeling mediators production by periodontal ligament (PDL) cells in the presence of bacterial challenge. Cells were seeded on BioFlex culture plates and exposed to Fusobacterium nucleatum ATCC 25586 and/or cyclic tensile strain (CTS) of low (CTSL) and high (CTSH) magnitudes for 1 and 3 days. Synthesis of cyclooxygenase-2 (COX2) and prostaglandin E2 (PGE2) was evaluated by ELISA. Gene expression and protein secretion of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-B ligand (RANKL) were evaluated by quantitative RT-PCR and ELISA, respectively. F. nucleatum increased the production of COX2 and PGE2, which was further increased by CTS. F. nucleatum-induced increase of PGE2 synthesis was significantly (P < 0.05) increased when CTSH was applied at 1 and 3 days. In addition, CTSH inhibited the F. nucleatum-induced upregulation of OPG at 1 and 3 days, thereby increasing the RANKL/OPG ratio. OPG and RANKL mRNA results correlated with the protein results. In summary, our findings provide original evidence that CTS can enhance bacterial-induced syntheses of molecules associated with inflammation and bone resorption by PDL cells. Therefore, biomechanical, such as orthodontic or occlusal, loading may enhance the bacterial-induced inflammation and destruction in periodontitis.
Resumo:
INTRODUCTION Conventional 2-dimensional radiography uses defined criteria for outcome assessment of apical surgery. However, these radiographic healing criteria are not applicable for 3-dimensional radiography. The present study evaluated the repeatability and reproducibility of new cone-beam computed tomographic (CBCT)-based healing criteria for the judgment of periapical healing 1 year after apical surgery. METHODS CBCT scans taken 1 year after apical surgery (61 roots of 54 teeth in 54 patients, mean age = 54.4 years) were evaluated by 3 blinded and calibrated observers using 4 different indices. Reformatted buccolingual CBCT sections through the longitudinal axis of the treated roots were analyzed. Radiographic healing was assessed at the resection plane (R index), within the apical area (A index), of the cortical plate (C index), and regarding a combined apical-cortical area (B index). All readings were performed twice to calculate the intraobserver agreement (repeatability). Second-time readings were used for analyzing the interobserver agreement (reproducibility). Various statistical tests (Cohen, kappa, Fisher, and Spearman) were performed to measure the intra- and interobserver concurrence, the variability of score ratios, and the correlation of indices. RESULTS For all indices, the rates of identical first- and second-time scores were always higher than 80% (intraobserver Cohen κ values ranging from 0.793 to 0.963). The B index (94.0%) showed the highest intraobserver agreement. Regarding interobserver agreement, the highest rate was found for the B index (72.1%). The Fleiss' κ values for R and B indices exhibited substantial agreement (0.626 and 0.717, respectively), whereas the values for A and C indices showed moderate agreement (0.561 and 0.573, respectively). The Spearman correlation coefficients for R, A, C, and B indices all exhibited a moderate to very strong correlation with the highest correlation found between C and B indices (rs = 0.8069). CONCLUSIONS All indices showed an excellent intraobserver agreement (repeatability). With regard to interobserver agreement (reproducibility), the B index (healing of apical and cortical defects combined) and the R index (healing on the resection plane) showed substantial congruence and thus are to be recommended in future studies when using buccolingual CBCT sections for radiographic outcome assessment of apical surgery.
Resumo:
BACKGROUND Endometriosis, the growth of endometrial tissue outside the uterine cavity, is associated with chronic pelvic pain, subfertility and an increased risk of ovarian cancer. Current treatments include the surgical removal of the lesions or the induction of a hypoestrogenic state. However, a reappearance of the lesion after surgery is common and a hypoestrogenic state is less than optimal for women of reproductive age. Additional approaches are required. Endometriosis lesions exist in a unique microenvironment characterized by increased concentrations of hormones, inflammation, oxidative stress and iron. This environment influences cell survival through the binding of membrane receptors and a subsequent cascading activation of intracellular kinases that stimulate a cellular response. Many of these kinase signalling pathways are constitutively activated in endometriosis. These pathways are being investigated as therapeutic targets in other diseases and thus may also represent a target for endometriosis treatment. METHODS To identify relevant English language studies published up to 2015 on kinase signalling pathways in endometriosis, we searched the Pubmed database using the following search terms in various combinations; 'endometriosis', 'inflammation', 'oxidative stress', 'iron', 'kinase', 'NF kappa', 'mTOR', 'MAPK' 'p38', 'JNK', 'ERK' 'estrogen' and progesterone'. Further citing references were identified using the Scopus database and finally current clinical trials were searched on the clinicaltrials.gov trial registry. RESULTS The current literature on intracellular kinases activated by the endometriotic environment can be summarized into three main pathways that could be targeted for treatments: the canonical IKKβ/NFκB pathway, the MAPK pathways (ERK1/2, p38 and JNK) and the PI3K/AKT/mTOR pathway. A number of pharmaceutical compounds that target these pathways have been successfully trialled in in vitro and animal models of endometriosis, although they have not yet proceeded to clinical trials. The current generation of kinase inhibitors carry a potential for adverse side effects. CONCLUSIONS Kinase signalling pathways represent viable targets for endometriosis treatment. At present, however, further improvements in clinical efficacy and the profile of adverse effects are required before these compounds can be useful for long-term endometriosis treatment. A better understanding of the molecular activity of these kinases, including the specific extracellular compounds that lead to their activation in endometriotic cells specifically should facilitate their improvement and could potentially lead to new, non-hormonal treatments of endometriosis.
Resumo:
Theileria parva and T. annulata provide intriguing models for the study of parasite-host interactions. Both parasites possess the unique property of being able to transform the cells they infect; T. parva transforms T and B cells, whereas T. annulata affects B cells and monocytes/macrophages. Parasitized cells do not require antigenic stimulation or exogenous growth factors and acquire the ability to proliferate continuously. In vivo, parasitized cells undergo clonal expansion and infiltrate both lymphoid and non-lymphoid tissues of the infected host. Theileria-induced transformation is entirely reversible and is accompanied by the expression of a wide range of different lymphokines and cytokines, some of which may contribute to proliferation or may enhance spread and survival of the parasitized cell in the host. The presence of the parasite in the host-cell cytoplasm modulates the state of activation of a number of signal transduction pathways. This, in turn, leads to the activation of transcription factors, including nuclear factor-kappa B, which appear to be essential for the survival of Theileria-transformed T cells.
Resumo:
The progressive growth of epithelial ovarian cancer tumor is regulated by proangiogenic molecules and growth factors released by tumor cells and the microenvironment. Previous studies showed that the expression of interleukin-8 (IL-8) directly correlates with the progression of human ovarian carcinomas implanted into the peritoneal cavity of nude mice. We examined the expression level of IL-8 in archival specimens of primary human ovarian carcinoma from patients undergoing curative surgery by in situ mRNA hybridization technique. The expression of IL-8 was significantly higher in patients with stage III disease than in patients with stage I disease. To investigate the role of IL-8 in the progressive growth of ovarian cancer, we isolated high- and low-IL-8 producing clones from parental Hey-A8 human ovarian cancer cells, and compared their proliferative activity and tumorigenicity in nude mice. The effect of exogenous IL-8 and IL-8 neutralizing antibody on ovarian cancer cell proliferation was investigated. Finally, we studied the modulation of IL-8 expression in ovarian cancer cells by sense and antisense IL-8 expression vector transfection and its effect on proliferation and tumorigenicity. We concluded that IL-8 has a direct growth potentiating activity in human ovarian cancer cells. ^ The expression level of IL-8 directly correlates with disease progression of human ovarian cancer, but the mechanism of induction is unknown. Since hypoxia and acidic pH are common features in solid tumors, we determined whether hypoxic and acidic conditions could regulate the expression of IL-8. Culturing the human ovarian cancer cells in hypoxic or acidic medium led to a significant increase in IL-8 mRNA and protein. Hypoxic- and acidosis-mediated transient increase in IL-8 expression involved both transcriptional activation of the IL-8 gene and enhanced stability of the IL-8 mRNA. Furthermore, we showed that IL-8 transcription activation by hypoxia or acidosis required the cooperation of NF-κB and AP-1 binding sites. ^ Finally, we studied novel therapies against human ovarian cancer. First, we determined whether inhibition of the catalytic tyrosine kinase activity of the receptors for vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) inhibits the formation of malignant ascites and the progressive growth of human ovarian carcinoma cells implanted into the peritoneal cavity of nude mice. Our results suggest that blockade of the VEGF/VPF receptor may be an efficient strategy to inhibit formation of malignant ascites and growth of VEGF/VPF-dependent human ovarian carcinomas. Secondly, we determined whether local sustained production of murine interferon-β could inhibit the growth of human ovarian cancer cells in the peritoneal cavity of nude mice. Our results showed that local production of IFN-β could inhibit the in vivo growth of human ovarian cancer cells by upregulating the expression of the inducible nitric oxide synthase (NOS) in host macrophages. ^
Resumo:
Pancreatic adenocarcinoma is the fourth leading cause of adult cancer death in the United States. At the time of diagnosis, most patients with pancreatic cancer have advanced and metastatic disease, which makes most of the traditional therapeutic strategies are ineffective for pancreatic cancer. A better understanding of the molecular basis of pancreatic cancer will provide the approach to identify the new strategies for early diagnosis and treatment. NF-κB is a family of transcription factor that play important roles in immune response, cell growth, apoptosis, and tumor development. We have shown that NF-κB is constitutively activated in most human pancreatic tumor tissues and cell lines, but not in the normal tissues and HPV E6E7 gene-immortalized human pancreatic ductal epithelial cells (HPDE/E6E7). By infecting the pancreatic cancer cell line Aspc-1 with a replication defective retrovirus expressing phosphorylation-defective IκBα (IκBαM), the constitutive NF-κB activation is blocked. Subsequent injection of this Aspc-1/IκBαM cells into the pancreas of athymic nude mice showed that liver metastasis is suppressed by the blockade of NF-κB activation. Current studies showed that an autocrine mechanism accounts for the constitutive activation of NF-κB in metastatic human pancreatic cancer cell lines, but not in nonmetastatic human pancreatic cancer cell lines. Further investigation showed that interleukin-1α (IL-1α) was the primary cytokine secreted by these cells that activates NF-κB. Inhibition of IL-1α activity suppressed the constitutive activation of NF-κB and the expression of its downstream target gene, uPA, in metastatic pancreatic cancer cell lines. Even though IL-1α is one of the previously identified NF-κB downstream target genes, our results demonstrate that regulation of IL-1α expression is independent of NF-κB and primarily dependent on AP-1 activity, which is in part induced by overexpression of EGF receptors and activation of MAP kinases. In conclusion, our findings suggest a possible mechanism by which NF-κB is constitutively activated in metastatic human pancreatic cancer cells and a possible missing mechanistic links between inflammation and cancer. ^
Resumo:
Background. Hepatitis B virus infection is one of major causes of acute and chronic hepatitis, cirrhosis of the liver, and primary hepatocellular carcinoma. Hepatitis B and its long term consequences are major health problems in the United States. Hepatitis B virus can be vertically transmitted from mother to infant during birth. Hepatitis B vaccination at birth is the most effective measure to prevent the newborn from HBV infection and its consequences, and is part of any robust perinatal hepatitis B prevention program following ACIP recommendations. Universal vaccination of the new born will prevent HBV infection during early childhood and, assuming that children receive the three dosages of the vaccine, it will also prevent adolescent and adult infections. Hepatitis B vaccination is now recommended as part of a comprehensive strategy to eliminate HBV transmission in the United States. ^ Objective. (1)To assess if the hepatitis B vaccination rates of newborn babies have improved after the 2005 ACIP recommendations. (2) To identify factors that affects the implementation of ACIP recommendation for hepatitis B vaccination in newborn babies. These factors will encourage ongoing improvement by identifying successful efforts and pinpointing areas that fall short and need attention. Additional focus areas may be identified to accelerate progress in eliminating perinatal HBV transmission.^ Methods. This review includes information from all pertinent articles, reviews, National immunization survey (NIS) surveys, reports, peer reviewed literature and web sources that were published after 1991.The key words to be used for selecting the articles are: "Perinatal Hepatitis B Prevention program", "Universal Hepatitis B vaccination of newborn babies", "ACIP Recommendations." The data gathered will be supplemented with an analysis of vaccination rates using the National Immunization Survey (NIS) birth dose coverage data.^ Results. The data collected in the NIS of 2009 reveals that the national coverage for birth dose of HepB increased to 60.8% from 50.1% in 2006. The largest increase observed for the birth dose in the past 5 years is from 2008 which increased from 55.3 % to 60.8% in 2009. By state, coverage ranged from 22.8% in Vermont to 80.7% in Michigan. %. Overall, in 2009 the estimated vaccination rates are in higher ranges for most states compared to the estimated vaccination rates in 2006. States vary widely in hepatitis B vaccination rates and in their compliance with the 2005 ACIP recommendation. There are many factors at various stages that might affect the successful implementation of the new ACIP recommendation as revealed in literature review. ^ Conclusions. HBV perinatal transmission can be eliminated, but it requires identifying the gaps and measures taken to increase the current vaccination coverage, ensuring timely administration of post exposure immunoprophylaxis and continued evaluations of the impact of immunization recommendations.^
Resumo:
Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^
Resumo:
We have purified and characterized a novel 60-kDa protein that binds to centromeric K-type repeat DNA from Schizosaccharomyces pombe. This protein was initially purified by its ability to bind to the autonomously replicating sequence 3002 DNA. Cloning of the gene encoding this protein revealed that it possesses significant homology to the mammalian centromere DNA-binding protein CENP-B and S. pombe Abp1, and this gene was designated as cbh+ (CENP-B homologue). Cbh protein specifically interacts in vitro with the K-type repeat DNA, which is essential for centromere function. The Cbh-binding consensus sequence was determined by DNase I footprinting assays as PyPuATATPyPuTA, featuring an inverted repeat of the first four nucleotides. Based on its binding activity to centromeric DNA and homology to centromere proteins, we suggest that this protein may be a functional homologue of the mammalian CENP-B in S. pombe.
Resumo:
An Fcα receptor probe of human origin was used to identify novel members of the Ig gene superfamily in mice. Paired Ig-like receptors, named PIR-A and PIR-B, are predicted from sequence analysis of the cDNAs isolated from a mouse splenic library. Both type I transmembrane proteins possess similar ectodomains with six Ig-like loops, but have different transmembrane and cytoplasmic regions. The predicted PIR-A protein has a short cytoplasmic tail and a charged Arg residue in the transmembrane region that, by analogy with the FcαR relative, suggests the potential for association with an additional transmembrane protein to form a signal transducing unit. In contrast, the PIR-B protein has an uncharged transmembrane region and a long cytoplasmic tail containing four potential immunoreceptor tyrosine-based inhibitory motifs. These features are shared by the related killer inhibitory receptors. PIR-A proteins appear to be highly variable, in that predicted peptide sequences differ for seven randomly selected PIR-A clones, whereas PIR-B cDNA clones are invariant. Southern blot analysis with PIR-B and PIR-A-specific probes suggests only one PIR-B gene and multiple PIR-A genes. The PIR-A and PIR-B genes are expressed in B lymphocytes and myeloid lineage cells, wherein both are expressed simultaneously. The characteristics of the highly-conserved PIR-A and PIR-B genes and their coordinate cellular expression suggest a potential regulatory role in humoral, inflammatory, and allergic responses.
Resumo:
Alternative pre-mRNA splicing patterns can change an extracellular stimulus, but the signaling pathways leading to these changes are still poorly characterized. Here, we describe a tyrosine-phosphorylated nuclear protein, YT521-B, and show that it interacts with the nuclear transcriptosomal component scaffold attachment factor B, and the 68-kDa Src substrate associated during mitosis, Sam68. Northern blot analysis demonstrated ubiquitous expression, but detailed RNA in situ analysis revealed cell type specificity in the brain. YT521-B protein is localized in the nucleoplasm and concentrated in 5–20 large nuclear dots. Deletion analysis demonstrated that the formation of these dots depends on the presence of the amino-terminal glutamic acid-rich domain and the carboxyl-terminal glutamic acid/arginine-rich region. We show that the latter comprises an important protein–protein interaction domain. The Src family kinase p59fyn-mediated tyrosine phosphorylation of Sam68 negatively regulates its association with YT521-B, and overexpression of p59fyn dissolves nuclear dots containing YT521-B. In vivo splicing assays demonstrated that YT521-B modulates alternative splice site selection in a concentration-dependent manner. Together, our data indicate that YT521-B and Sam68 may be part of a signal transduction pathway that influences splice site selection.
Resumo:
Exposure of eukaryotic cells to extracellular stimuli results in activation of mitogen-activated protein kinase (MAPK) cascades composed of MAPKs, MAPK kinases (MAP2Ks), and MAPK kinase kinases (MAP3Ks). Mammals possess a large number of MAP3Ks, many of which can activate the c-Jun N-terminal kinase (JNK) MAPK cascade when overexpressed, but whose biological function is poorly understood. We examined the function of the MAP3K MEK kinase 1 (MEKK1) in proinflammatory signaling. Using MEKK1-deficient embryonic stem cells prepared by gene targeting, we find that, in addition to its function in JNK activation by growth factors, MEKK1 is required for JNK activation by diverse proinflammatory stimuli, including tumor necrosis factor α, IL-1, double-stranded RNA, and lipopolysaccharide. MEKK1 is also essential for induction of embryonic stem cell migration by serum factors, but is not required for activation of other MAPKs or the IκB kinase signaling cascade.
Resumo:
Staphylococcus aureus produces a virulence factor, protein A (SpA), that contains five homologous Ig-binding domains. The interactions of SpA with the Fab region of membrane-anchored Igs can stimulate a large fraction of B cells, contributing to lymphocyte clonal selection. To understand the molecular basis for this activity, we have solved the crystal structure of the complex between domain D of SpA and the Fab fragment of a human IgM antibody to 2.7-Å resolution. In the complex, helices II and III of domain D interact with the variable region of the Fab heavy chain (VH) through framework residues, without the involvement of the hypervariable regions implicated in antigen recognition. The contact residues are highly conserved in human VH3 antibodies but not in other families. The contact residues from domain D also are conserved among all SpA Ig-binding domains, suggesting that each could bind in a similar manner. Features of this interaction parallel those reported for staphylococcal enterotoxins that are superantigens for many T cells. The structural homology between Ig VH regions and the T-cell receptor Vβ regions facilitates their comparison, and both types of interactions involve lymphocyte receptor surface remote from the antigen binding site. However, T-cell superantigens reportedly interact through hydrogen bonds with T-cell receptor Vβ backbone atoms in a primary sequence-independent manner, whereas SpA relies on a sequence-restricted conformational binding with residue side chains, suggesting that this common bacterial pathogen has adopted distinct molecular recognition strategies for affecting large sets of B and T lymphocytes.