993 resultados para Mycobacterium avium subsp. paratuberculosis (MAP)
Resumo:
The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.
Resumo:
Today, PCR using broad-range primers is being used increasingly to detect pathogens from resected heart valves. Herein is described the first case of multivalve infective endocarditis where 16S rDNA PCR was used to detect a single pathogen from two affected valves in a 61-year-old man. Triple heart valve replacement was required despite six weeks of appropriate antimicrobial therapy. The organism was confirmed as Streptococcus gallolyticus subsp. macedonicus, a member of the 'S. equinus/S. bovis' complex. To date, only one report has been made of human infection due to this organism. This may be due to the limited resolution of the routine diagnostic methods used and/or as a consequence of the complex nomenclature associated with this group of organisms.
Resumo:
A recent study characterizing bacteriophage populations within human caecal effluent demonstrated the presence of numerous Podoviridae, Siphoviridae and Myoviridae within this material (Hoyles et al., 2014, Res Microbiol 165, 803–812). Further to this work, anaerobic bacteria were isolated on fastidious anaerobe agar from the caecal effluent of a healthy 31-year-old woman. Ten colonies were selected at random, streaked to purity and screened against the remaining caecal effluent (filter-sterilized, 0.45 μm pore size) in an attempt to isolate lytic bacteriophages. Bacteriophages within the effluent [2×105 ± 2.65×103 (n=3) pfu/ml] were active against five of the isolates, all identified by 16S rRNA gene sequence analysis as Klebsiella pneumoniae. One of the five isolates, L4-FAA5, was characterized further and found to be K. pneumoniae subsp. pneumoniae capsule type K2 rmpA+, and was used to propagate a bacteriophage (which we named KLPN1) to purity. Bacteriophage KLPN1 was a member of the Siphoviridae with a rosette-like tail tip and exhibited depolymerase activity, demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of 21 clinical strains representing unknown K. pneumoniae subsp. pneumoniae capsule types and types K1, K2, K5, K20, K54 and K57, KLPN1 infected only K2 strains, but did not exhibit depolymerase activity against these. Whole-genome sequence analysis of KLPN1 showed the bacteriophage to have a genome of 49,037 bp (50.53 GC mol%) comprising 73 predicted ORFs, of which 22 encoded genes associated with structure, host recognition, packaging, DNA replication and cell lysis. The host recognition-associated gene was a potential depolymerase. This is the first report of the isolation of a bacterium–bacteriophage combination from the human caecum, and only the third member of the Siphoviridae known to infect K. pneumoniae subsp. pneumoniae.
Resumo:
A sample of caecal effluent was obtained from a female patient who had undergone a routine colonoscopic examination. Bacteria were isolated anaerobically from the sample, and screened against the remaining filtered caecal effluent in an attempt to isolate bacteriophages (phages). A lytic phage, named KLPN1, was isolated on a strain identified as Klebsiella pneumoniae subsp. pneumoniae (capsular type K2, rmpA+). This Siphoviridae phage presents a rosette-like tail tip and exhibits depolymerase activity, as demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of clinical isolates of K. pneumoniae subsp. pneumoniae, phage KLPN1 was shown to infect and lyse capsular type K2 strains, though it did not exhibit depolymerase activity on such hosts. The genome of KLPN1 was determined to be 49,037 bp (50.53 %GC) in length, encompassing 73 predicted ORFs, of which 23 represented genes associated with structure, host recognition, packaging, DNA replication and cell lysis. On the basis of sequence analyses, phages KLPN1 (GenBank: KR262148) and 1513 (a member of the family Siphoviridae, GenBank: KP658157) were found to be two new members of the genus “Kp36likevirus”.
Resumo:
Dissertation presented in fulfillment of the requirements for the Degree of Doctor of Philosophy in Biology (Molecular Genetics) at the Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
RESUMO - A Tuberculose surge, de acordo com o último relatório da Organização Mundial da Saúde, como a segunda principal causa de morte em todo o mundo, de entre as doenças infeciosas. Em 2012, 1.3 milhões de pessoas morreram devido a esta patologia e surgiram 8.6 milhões de novos casos. De entre os grupos de risco de infeção, surgem os profissionais de saúde. A dificuldade no diagnóstico da Tuberculose, o contacto próximo com os pacientes, as medidas de controlo de infeção por vezes inadequadas são algumas das razões que explicam o risco mais elevado de contrair Tuberculose no local de trabalho. Esta Dissertação de Mestrado pretende estabelecer uma nova classificação de risco de infeção por M. tuberculosis em estabelecimentos de saúde, com vista a promover a saúde destes profissionais, inovadora nos critérios de avaliação das medidas de controlo de infeção e de análise dos casos de exposição não protegida a Tuberculose ativa. Esta metodologia de avaliação foi o resultado de uma revisão bibliográfica sobre a temática, tendo sido aplicada num hospital para verificar a sua adequabilidade e mais-valia.
Resumo:
The organizer is a ciliated signalling transient organ, responsible for the patterning of embryo tissues during embryonic development. In higher vertebrates, such as mouse and chick, this organizer (the node and the Hensen’s node, respectively) performs dorsalventral and anteriorposterior axis definition, as well as left-right patterning of the internal organs. In lower vertebrates, such as frog and zebrafish, there is a separate specialized organ for left-right purposes called the Gastrocoel Roof Plate (GRP) and Kupffer’s Vesicle (KV), respectively. It is known that mouse and chick organizer cells give rise to structures like floor plate, notochord, hypochord and somites. Frog GRP originates all these but floor plate. In zebrafish, at 13-14 somite stage (ss) the KV finished its left-right patterning but what happens to this organizer’ cells is still poorly studied. This research attempts to understand the fate and behaviour of the KV cells. We followed the fate of KV cells by live imaging and by tight time-courses with fixed larvae. We assessed in detail their proliferative and death profile, as well as cilia length progression from 9-10 ss until 29-30 ss. We conclude that the KV cells mostly follow the evolutionarily conserved fates described for other organizers. These cells mainly incorporate the notochord and hypochord; few cells incorporate the floor plate and the somites. As a novelty, it is also hypothesized that the hypural cell fate may be among the KV cell fates.
Resumo:
The present Working Project aims at studying the topic of assurance mapping in a specific organizational context of a Portuguese retail company. For this purpose, an assurance map framework was designed to support the decision making process of stakeholders, through the delivery of comfort concerning risks, operations and control. In the end, the framework was successfully implemented for the process sourcing of goods in two business units of the company. Although, further implementation of the framework proved not to be feasible during the project’s timespan, it is expected to occur in the near future.
Resumo:
Staphylococcus aureus harbors redundant adhesins mediating tissue colonization and infection. To evaluate their intrinsic role outside of the staphylococcal background, a system was designed to express them in Lactococcus lactis subsp. cremoris 1363. This bacterium is devoid of virulence factors and has a known genetic background. A new Escherichia coli-L. lactis shuttle and expression vector was constructed for this purpose. First, the high-copy-number lactococcal plasmid pIL253 was equipped with the oriColE1 origin, generating pOri253 that could replicate in E. coli. Second, the lactococcal promoters P23 or P59 were inserted at one end of the pOri253 multicloning site. Gene expression was assessed by a luciferase reporter system. The plasmid carrying P23 (named pOri23) expressed luciferase constitutively at a level 10,000 times greater than did the P59-containing plasmid. Transcription was absent in E. coli. The staphylococcal clumping factor A (clfA) gene was cloned into pOri23 and used as a model system. Lactococci carrying pOri23-clfA produced an unaltered and functional 130-kDa ClfA protein attached to their cell walls. This was indicated both by the presence of the protein in Western blots of solubilized cell walls and by the ability of ClfA-positive lactococci to clump in the presence of plasma. ClfA-positive lactococci had clumping titers (titer of 4,112) similar to those of S. aureus Newman in soluble fibrinogen and bound equally well to solid-phase fibrinogen. These experiments provide a new way to study individual staphylococcal pathogenic factors and might complement both classical knockout mutagenesis and modern in vivo expression technology and signature tag mutagenesis.
Resumo:
INTRODUCTION: Mycobacterium tuberculosis may cause a large variety of clinical presentations due to its ability to disseminate by contiguity or hematogenously. Tuberculosis may remain undiagnosed for years due to the chronic course of the disease, with potentially life-threatening long-term complications. CASE PRESENTATION: In this case report, we describe a tuberculous aortic graft infection in a 72-year-old man documented by polymerase chain reaction and cultures. The patient presented with three episodes of hemoptysis following a remote history of miliary tuberculosis. The infection was treated by graft replacement and prolonged antimycobacterial therapy. CONCLUSION: Tuberculous infection of a vascular graft is an uncommon complication, but should be considered in patients with an intravascular device and a history of previous tuberculosis, especially when hematogenous spread may have occurred a few months after surgery, or when an active mycobacterial infection is present in close proximity to the graft.
Resumo:
Metalworking fluid-associated hypersensitivity pneumonitis (MWF-HP) is a pulmonary disease caused by inhaling microorganisms present in the metalworking fluids used in the industrial sector. Mycobacterium immunogenum is the main etiological agent. Among the clinical, radiological and biological tools used for diagnosis, serological tests are important. The aim of this study was to identify immunogenic proteins in M. immunogenum and to use recombinant antigens for serological diagnosis of MWF-HP. Immunogenic proteins were detected by two-dimensional Western blot and candidate proteins were identified by mass spectrometry. Recombinant antigens were expressed in Escherichia coli and tested by enzyme-linked immunosorbent assay (ELISA) with the sera of 14 subjects with MWF-HP and 12 asymptomatic controls exposed to M. immunogenum. From the 350 spots visualized by two-dimensional gel electrophoresis with M. immunogenum extract, 6 immunogenic proteins were selected to be expressed as recombinant antigens. Acyl-CoA dehydrogenase antigen allowed for the best discrimination of MWF-HP cases against controls with an area under the receiver operating characteristics (ROC) curve of 0.930 (95% CI=0.820-1), a sensitivity of 100% and a specificity of 83% for the optimum threshold. Other recombinant antigens correspond to acyl-CoA dehydrogenase FadE, cytosol aminopeptidase, dihydrolipoyl dehydrogenase, serine hydroxymethyltransferase and superoxide dismutase. This is the first time that recombinant antigens have been used for the serodiagnosis of hypersensitivity pneumonitis. The availability of recombinant antigens makes it possible to develop standardized serological tests which in turn could simplify diagnosis, thus making it less invasive.
Resumo:
BACKGROUND: Tuberculosis remains one of the world's deadliest transmissible diseases despite widespread use of the BCG vaccine. MTBVAC is a new live tuberculosis vaccine based on genetically attenuated Mycobacterium tuberculosis that expresses most antigens present in human isolates of M tuberculosis. We aimed to compare the safety of MTBVAC with BCG in healthy adult volunteers. METHODS: We did this single-centre, randomised, double-blind, controlled phase 1 study at the Centre Hospitalier Universitaire Vaudois (CHUV; Lausanne, Switzerland). Volunteers were eligible for inclusion if they were aged 18-45 years, clinically healthy, HIV-negative and tuberculosis-negative, and had no history of active tuberculosis, chemoprophylaxis for tuberculosis, or BCG vaccination. Volunteers fulfilling the inclusion criteria were randomly assigned to three cohorts in a dose-escalation manner. Randomisation was done centrally by the CHUV Pharmacy and treatments were masked from the study team and volunteers. As participants were recruited within each cohort, they were randomly assigned 3:1 to receive MTBVAC or BCG. Of the participants allocated MTBVAC, those in the first cohort received 5 × 10(3) colony forming units (CFU) MTBVAC, those in the second cohort received 5 × 10(4) CFU MTBVAC, and those in the third cohort received 5 × 10(5) CFU MTBVAC. In all cohorts, participants assigned to receive BCG were given 5 × 10(5) CFU BCG. Each participant received a single intradermal injection of their assigned vaccine in 0·1 mL sterile water in their non-dominant arm. The primary outcome was safety in all vaccinated participants. Secondary outcomes included whole blood cell-mediated immune response to live MTBVAC and BCG, and interferon γ release assays (IGRA) of peripheral blood mononuclear cells. This trial is registered with ClinicalTrials.gov, number NCT02013245. FINDINGS: Between Jan 23, 2013, and Nov 6, 2013, we enrolled 36 volunteers into three cohorts, each of which consisted of nine participants who received MTBVAC and three who received BCG. 34 volunteers completed the trial. The safety of vaccination with MTBVAC at all doses was similar to that of BCG, and vaccination did not induce any serious adverse events. All individuals were IGRA negative at the end of follow-up (day 210). After whole blood stimulation with live MTBVAC or BCG, MTBVAC was at least as immunogenic as BCG. At the same dose as BCG (5×10(5) CFU), although no statistical significance could be achieved, there were more responders in the MTBVAC group than in the BCG group, with a greater frequency of polyfunctional CD4+ central memory T cells. INTERPRETATION: To our knowledge, MTBVAC is the first live-attenuated M tuberculosis vaccine to reach clinical assessment, showing similar safety to BCG. MTBVAC seemed to be at least as immunogenic as BCG, but the study was not powered to investigate this outcome. Further plans to use more immunogenicity endpoints in a larger number of volunteers (adults and adolescents) are underway, with the aim to thoroughly characterise and potentially distinguish immunogenicity between MTBVAC and BCG in tuberculosis-endemic countries. Combined with an excellent safety profile, these data support advanced clinical development in high-burden tuberculosis endemic countries. FUNDING: Biofabri and Bill & Melinda Gates Foundation through the TuBerculosis Vaccine Initiative (TBVI).