750 resultados para Multiclass Classification
Resumo:
The objectives of this study were to assess the interrater reproducibility of the instrument to classify pediatric patients with cancer; verify the adequacy of the patient classification instrument for pediatric patients with cancer; and make a proposal for changing the instrument, thus allowing for the necessary adjustments for pediatric oncology patients. A total of 34 pediatric inpatients of a Cancer Hospital were evaluated by the teams of physicians, nurses and nursing technicians. The Kappa coefficient was used to rate the agreement between the scores, which revealed a moderate to high value in the objective classifications, and a low value in the subjective. In conclusion, the instrument is reliable and reproducible, however, it is suggested that to classify pediatric oncology patients, some items should be complemented in order to reach an outcome that is more compatible with the reality of this specific population.
Resumo:
The efficiency in image classification tasks can be improved using combined information provided by several sources, such as shape, color, and texture visual properties. Although many works proposed to combine different feature vectors, we model the descriptor combination as an optimization problem to be addressed by evolutionary-based techniques, which compute distances between samples that maximize their separability in the feature space. The robustness of the proposed technique is assessed by the Optimum-Path Forest classifier. Experiments showed that the proposed methodology can outperform individual information provided by single descriptors in well-known public datasets. © 2012 IEEE.
Resumo:
Predicting and mapping productivity areas allows crop producers to improve their planning of agricultural activities. The primary aims of this work were the identification and mapping of specific management areas allowing coffee bean quality to be predicted from soil attributes and their relationships to relief. The study area was located in the Southeast of the Minas Gerais state, Brazil. A grid containing a total of 145 uniformly spaced nodes 50 m apart was established over an area of 31. 7 ha from which samples were collected at depths of 0. 00-0. 20 m in order to determine physical and chemical attributes of the soil. These data were analysed in conjunction with plant attributes including production, proportion of beans retained by different sieves and drink quality. The results of principal component analysis (PCA) in combination with geostatistical data showed the attributes clay content and available iron to be the best choices for identifying four crop production environments. Environment A, which exhibited high clay and available iron contents, and low pH and base saturation, was that providing the highest yield (30. 4l ha-1) and best coffee beverage quality (61 sacks ha-1). Based on the results, we believe that multivariate analysis, geostatistics and the soil-relief relationships contained in the digital elevation model (DEM) can be effectively used in combination for the hybrid mapping of areas of varying suitability for coffee production. © 2012 Springer Science+Business Media New York.
Resumo:
Incluye Bibliografía
Resumo:
We compared different cultivars and hybrids of crucifers in relation to development and life-history of diamondback moth (Plutella xylostella) to classify the plants according to their resistance to the pest. The plants used were Manteiga da Geórgia kale, Bola de Neve cauliflower, Ramoso Piracicaba Precoce broccoli, Chato-de-quintal cabbage, and the hybrid cabbages Midori, TPC668, TPC308, and TPC681. We evaluated performance daily until the pupal stage. Pupae were assessed individually to determine the pupal weight, performance, and pupal period. We determined the sex ratio, fecundity, fertility, and longevity of the emerged adults and calculated their reproductive potential. Cabbage hybrids TPC668, TPC308, and TPC681 do not support the development and reproduction of the diamondback moth. These hybrids show a level of resistance that is similar to that found the commercially available hybrid Midori and cultivar Chato de Quintal, which are known to be resistant to the diamondback moth. This finding implies that the capitata (cabbage) cultivars are the most suitable for planting because they are more resistant to pest than the cultivar's moth, acephala (kale). © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects - as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics. © 2012 Elsevier B.V.
Resumo:
The water column overlying the submerged aquatic vegetation (SAV) canopy presents difficulties when using remote sensing images for mapping such vegetation. Inherent and apparent water optical properties and its optically active components, which are commonly present in natural waters, in addition to the water column height over the canopy, and plant characteristics are some of the factors that affect the signal from SAV mainly due to its strong energy absorption in the near-infrared. By considering these interferences, a hypothesis was developed that the vegetation signal is better conserved and less absorbed by the water column in certain intervals of the visible region of the spectrum; as a consequence, it is possible to distinguish the SAV signal. To distinguish the signal from SAV, two types of classification approaches were selected. Both of these methods consider the hemispherical-conical reflectance factor (HCRF) spectrum shape, although one type was supervised and the other one was not. The first method adopts cluster analysis and uses the parameters of the band (absorption, asymmetry, height and width) obtained by continuum removal as the input of the classification. The spectral angle mapper (SAM) was adopted as the supervised classification approach. Both approaches tested different wavelength intervals in the visible and near-infrared spectra. It was demonstrated that the 585 to 685-nm interval, corresponding to the green, yellow and red wavelength bands, offered the best results in both classification approaches. However, SAM classification showed better results relative to cluster analysis and correctly separated all spectral curves with or without SAV. Based on this research, it can be concluded that it is possible to discriminate areas with and without SAV using remote sensing. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Breast cancer is the most common cancer among women. In CAD systems, several studies have investigated the use of wavelet transform as a multiresolution analysis tool for texture analysis and could be interpreted as inputs to a classifier. In classification, polynomial classifier has been used due to the advantages of providing only one model for optimal separation of classes and to consider this as the solution of the problem. In this paper, a system is proposed for texture analysis and classification of lesions in mammographic images. Multiresolution analysis features were extracted from the region of interest of a given image. These features were computed based on three different wavelet functions, Daubechies 8, Symlet 8 and bi-orthogonal 3.7. For classification, we used the polynomial classification algorithm to define the mammogram images as normal or abnormal. We also made a comparison with other artificial intelligence algorithms (Decision Tree, SVM, K-NN). A Receiver Operating Characteristics (ROC) curve is used to evaluate the performance of the proposed system. Our system is evaluated using 360 digitized mammograms from DDSM database and the result shows that the algorithm has an area under the ROC curve Az of 0.98 ± 0.03. The performance of the polynomial classifier has proved to be better in comparison to other classification algorithms. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
An important tool for the heart disease diagnosis is the analysis of electrocardiogram (ECG) signals, since the non-invasive nature and simplicity of the ECG exam. According to the application, ECG data analysis consists of steps such as preprocessing, segmentation, feature extraction and classification aiming to detect cardiac arrhythmias (i.e.; cardiac rhythm abnormalities). Aiming to made a fast and accurate cardiac arrhythmia signal classification process, we apply and analyze a recent and robust supervised graph-based pattern recognition technique, the optimum-path forest (OPF) classifier. To the best of our knowledge, it is the first time that OPF classifier is used to the ECG heartbeat signal classification task. We then compare the performance (in terms of training and testing time, accuracy, specificity, and sensitivity) of the OPF classifier to the ones of other three well-known expert system classifiers, i.e.; support vector machine (SVM), Bayesian and multilayer artificial neural network (MLP), using features extracted from six main approaches considered in literature for ECG arrhythmia analysis. In our experiments, we use the MIT-BIH Arrhythmia Database and the evaluation protocol recommended by The Association for the Advancement of Medical Instrumentation. A discussion on the obtained results shows that OPF classifier presents a robust performance, i.e.; there is no need for parameter setup, as well as a high accuracy at an extremely low computational cost. Moreover, in average, the OPF classifier yielded greater performance than the MLP and SVM classifiers in terms of classification time and accuracy, and to produce quite similar performance to the Bayesian classifier, showing to be a promising technique for ECG signal analysis. © 2012 Elsevier Ltd. All rights reserved.