832 resultados para Multi-particle systems
Resumo:
In this paper the use of neural networks for the control of dynamical systems is considered. Both identification and feedback control aspects are discussed as well as the types of system for which neural networks can provide a useful technique. Multi-layer Perceptron and Radial Basis function neural network types are looked at, with an emphasis on the latter. It is shown how basis function centre selection is a critical part of the implementation process and that multivariate clustering algorithms can be an extremely useful tool for finding centres.
Resumo:
The consistency of precipitation variability estimated from the multiple satellite-based observing systems is assessed. There is generally good agreement between TRMM TMI, SSM/I, GPCP and AMSRE datasets for the inter-annual variability of precipitation since 1997 but the HOAPS dataset appears to overestimate the magnitude of variability. Over the tropical ocean the TRMM 3B42 dataset produces unrealistic variabilitys. Based upon deseasonalised GPCP data for the period 1998-2008, the sensitivity of global mean precipitation (P) to surface temperature (T) changes (dP/dT) is about 6%/K, although a smaller sensitivity of 3.6%/K is found using monthly GPCP data over the longer period 1989-2008. Over the tropical oceans dP/dT ranges from 10-30%/K depending upon time-period and dataset while over tropical land dP/dT is -8 to -11%/K for the 1998-2008 period. Analyzing the response of the tropical ocean precipitation intensity distribution to changes in T we find the wetter area P shows a strong positive response to T of around 20%/K. The response over the drier tropical regimes is less coherent and varies with datasets, but responses over the tropical land show significant negative relationships over an interannual time-scale. The spatial and temporal resolutions of the datasets strongly influence the precipitation responses over the tropical oceans and help explain some of the discrepancy between different datasets. Consistency between datasets is found to increase on averaging from daily to 5-day time-scales and considering a 1o (or coarser) spatial resolution. Defining the wet and dry tropical ocean regime by the 60th percentile of P intensity, the 5-day average, 1o TMI data exhibits a coherent drying of the dry regime at the rate of -20%/K and the wet regime becomes wetter at a similar rate with warming.
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KMSUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Resumo:
In order to harness the computational capacity of dissociated cultured neuronal networks, it is necessary to understand neuronal dynamics and connectivity on a mesoscopic scale. To this end, this paper uncovers dynamic spatiotemporal patterns emerging from electrically stimulated neuronal cultures using hidden Markov models (HMMs) to characterize multi-channel spike trains as a progression of patterns of underlying states of neuronal activity. However, experimentation aimed at optimal choice of parameters for such models is essential and results are reported in detail. Results derived from ensemble neuronal data revealed highly repeatable patterns of state transitions in the order of milliseconds in response to probing stimuli.
Resumo:
In this paper a new system identification algorithm is introduced for Hammerstein systems based on observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a non-uniform rational B-spline (NURB) neural network. The proposed system identification algorithm for this NURB network based Hammerstein system consists of two successive stages. First the shaping parameters in NURB network are estimated using a particle swarm optimization (PSO) procedure. Then the remaining parameters are estimated by the method of the singular value decomposition (SVD). Numerical examples including a model based controller are utilized to demonstrate the efficacy of the proposed approach. The controller consists of computing the inverse of the nonlinear static function approximated by NURB network, followed by a linear pole assignment controller.
Resumo:
This technical note investigates the controllability of the linearized dynamics of the multilink inverted pendulum as the number of links and the number and location of actuators changes. It is demonstrated that, in some instances, there exist sets of parameter values that render the system uncontrollable and so usual methods for assessing controllability are difficult to employ. To assess the controllability, a theorem on strong structural controllability for single-input systems is extended to the multiinput case.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
Business and IT alignment is increasingly acknowledged as a key for organisational performance. However, alignment research lack to mechanisms that enable for on-going process with multi-level effects. Multi-level learning allows on-going effectiveness through development of the organisation and improved quality of business and IT strategies. In particular, exploration and exploitation enable effective process of alignment across dynamic multi-level of learning. Hence, this paper proposes a conceptual framework that links multi-level learning and business-IT strategy through the concept of exploration and exploitation, which considers short-term and long-term alignment together to address the challenges of strategic alignment faced in sustaining organisational performance.
Resumo:
In data fusion systems, one often encounters measurements of past target locations and then wishes to deduce where the targets are currently located. Recent research on the processing of such out-of-sequence data has culminated in the development of a number of algorithms for solving the associated tracking problem. This paper reviews these different approaches in a common Bayesian framework and proposes an architecture that orthogonalises the data association and out-of-sequence problems such that any combination of solutions to these two problems can be used together. The emphasis is not on advocating one approach over another on the basis of computational expense, but rather on understanding the relationships between the algorithms so that any approximations made are explicit.
Resumo:
Diaminofluoresceins are widely used probes for detection and intracellular localization of NO formation in cultured/isolated cells and intact tissues. The fluorinated derivative, 4-amino-5-methylamino-2′,7′-difluorofluorescein (DAF-FM), has gained increasing popularity in recent years due to its improved NO-sensitivity, pH-stability, and resistance to photo-bleaching compared to the first-generation compound, DAF-2. Detection of NO production by either reagent relies on conversion of the parent compound into a fluorescent triazole, DAF-FM-T and DAF-2-T, respectively. While this reaction is specific for NO and/or reactive nitrosating species, it is also affected by the presence of oxidants/antioxidants. Moreover, the reaction with other molecules can lead to the formation of fluorescent products other than the expected triazole. Thus additional controls and structural confirmation of the reaction products are essential. Using human red blood cells as an exemplary cellular system we here describe robust protocols for the analysis of intracellular DAF-FM-T formation using an array of fluorescence-based methods (laser-scanning fluorescence microscopy, flow cytometry and fluorimetry) and analytical separation techniques (reversed-phase HPLC and LC-MS/MS). When used in combination, these assays afford unequivocal identification of the fluorescent signal as being derived from NO and are applicable to most other cellular systems without or with only minor modifications.
Resumo:
In this paper, we propose a novel online modeling algorithm for nonlinear and nonstationary systems using a radial basis function (RBF) neural network with a fixed number of hidden nodes. Each of the RBF basis functions has a tunable center vector and an adjustable diagonal covariance matrix. A multi-innovation recursive least square (MRLS) algorithm is applied to update the weights of RBF online, while the modeling performance is monitored. When the modeling residual of the RBF network becomes large in spite of the weight adaptation, a node identified as insignificant is replaced with a new node, for which the tunable center vector and diagonal covariance matrix are optimized using the quantum particle swarm optimization (QPSO) algorithm. The major contribution is to combine the MRLS weight adaptation and QPSO node structure optimization in an innovative way so that it can track well the local characteristic in the nonstationary system with a very sparse model. Simulation results show that the proposed algorithm has significantly better performance than existing approaches.
Resumo:
We present the first climate prediction of the coming decade made with multiple models, initialized with prior observations. This prediction accrues from an international activity to exchange decadal predictions in near real-time, in order to assess differences and similarities, provide a consensus view to prevent over-confidence in forecasts from any single model, and establish current collective capability. We stress that the forecast is experimental, since the skill of the multi-model system is as yet unknown. Nevertheless, the forecast systems used here are based on models that have undergone rigorous evaluation and individually have been evaluated for forecast skill. Moreover, it is important to publish forecasts to enable open evaluation, and to provide a focus on climate change in the coming decade. Initialized forecasts of the year 2011 agree well with observations, with a pattern correlation of 0.62 compared to 0.31 for uninitialized projections. In particular, the forecast correctly predicted La Niña in the Pacific, and warm conditions in the north Atlantic and USA. A similar pattern is predicted for 2012 but with a weaker La Niña. Indices of Atlantic multi-decadal variability and Pacific decadal variability show no signal beyond climatology after 2015, while temperature in the Niño3 region is predicted to warm slightly by about 0.5 °C over the coming decade. However, uncertainties are large for individual years and initialization has little impact beyond the first 4 years in most regions. Relative to uninitialized forecasts, initialized forecasts are significantly warmer in the north Atlantic sub-polar gyre and cooler in the north Pacific throughout the decade. They are also significantly cooler in the global average and over most land and ocean regions out to several years ahead. However, in the absence of volcanic eruptions, global temperature is predicted to continue to rise, with each year from 2013 onwards having a 50 % chance of exceeding the current observed record. Verification of these forecasts will provide an important opportunity to test the performance of models and our understanding and knowledge of the drivers of climate change.
Resumo:
Whilst hydrological systems can show resilience to short-term streamflow deficiencies during within-year droughts, prolonged deficits during multi-year droughts are a significant threat to water resources security in Europe. This study uses a threshold-based objective classification of regional hydrological drought to qualitatively examine the characteristics, spatio-temporal evolution and synoptic climatic drivers of multi-year drought events in 1962–64, 1975–76 and 1995–97, on a European scale but with particular focus on the UK. Whilst all three events are multi-year, pan-European phenomena, their development and causes can be contrasted. The critical factor in explaining the unprecedented severity of the 1975–76 event is the consecutive occurrence of winter and summer drought. In contrast, 1962–64 was a succession of dry winters, mitigated by quiescent summers, whilst 1995–97 lacked spatial coherence and was interrupted by wet interludes. Synoptic climatic conditions vary within and between multi-year droughts, suggesting that regional factors modulate the climate signal in streamflow drought occurrence. Despite being underpinned by qualitatively similar climatic conditions and commonalities in evolution and characteristics, each of the three droughts has a unique spatio-temporal signature. An improved understanding of the spatio-temporal evolution and characteristics of multi-year droughts has much to contribute to monitoring and forecasting capability, and to improved mitigation strategies.
Resumo:
The increasing use of drug combinations to treat disease states, such as cancer, calls for improved delivery systems that are able to deliver multiple agents. Herein, we report a series of novel Janus dendrimers with potential for use in combination therapy. Different generations (first and second) of PEG-based dendrons containing two different “model drugs”, benzyl alcohol (BA) and 3-phenylpropionic acid (PPA), were synthesized. BA and PPA were attached via two different linkers (carbonate and ester, respectively) to promote differential drug release. The four dendrons were coupled together via (3 + 2) cycloaddition chemistries to afford four Janus dendrimers, which contained varying amounts and different ratios of BA and PPA, namely, (BA)2-G1-G1-(PPA)2, (BA)4-G2-G1-(PPA)2, (BA)2-G1-G2-(PPA)4, and (BA)4-G2-G2-(PPA)4. Release studies in plasma showed that the dendrimers provided sequential release of the two model drugs, with BA being released faster than PPA from all of the dendrons. The different dendrimers allowed delivery of increasing amounts (0.15–0.30 mM) and in exact molecular ratios (1:2; 2:1; 1:2; 2:2) of the two model drug compounds. The dendrimers were noncytotoxic (100% viability at 1 mg/mL) toward human umbilical vein endothelial cells (HUVEC) and nontoxic toward red blood cells, as confirmed by hemolysis studies. These studies demonstrate that these Janus PEG-based dendrimers offer great potential for the delivery of drugs via combination therapy.