829 resultados para Multi-classifier systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The aim of this study was to evaluate, ex vivo, the precision of five electronic root canal length measurement devices (ERCLMDs) with different operating systems: the Root ZX, Mini Apex Locator, Propex II, iPex, and RomiApex A-15, and the possible influence of the positioning of the instrument tips short of the apical foramen. Material and Methods: Forty-two mandibular bicuspids had their real canal lengths (RL) previously determined. Electronic measurements were performed 1.0 mm short of the apical foramen (-1.0), followed by measurements at the apical foramen (0.0). The data resulting from the comparison of the ERCLMD measurements and the RL were evaluated by the Wilcoxon and Friedman tests at a significance level of 5%. Results: Considering the measurements performed at 0.0 and -1.0, the precision rates for the ERCLMDs were: 73.5% and 47.1% (Root ZX), 73.5% and 55.9% (Mini Apex Locator), 67.6% and 41.1% (Propex II), 61.7% and 44.1% (iPex), and 79.4% and 44.1% (RomiApex A-15), respectively, considering ±0.5 mm of tolerance. Regarding the mean discrepancies, no differences were observed at 0.0; however, in the measurements at -1.0, the iPex, a multi-frequency ERCLMD, had significantly more discrepant readings short of the apical foramen than the other devices, except for the Propex II, which had intermediate results. When the ERCLMDs measurements at -1.0 were compared with those at 0.0, the Propex II, iPex and RomiApex A-15 presented significantly higher discrepancies in their readings. Conclusions: Under the conditions of the present study, all the ERCLMDs provided acceptable measurements at the 0.0 position. However, at the -1.0 position, the ERCLMDs had a lower precision, with statistically significant differences for the Propex II, iPex, and RomiApex A-15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methods We conducted a phase I, multicenter, randomized, double-blind, placebo-controlled, multi-arm (10) parallel study involving healthy adults to evaluate the safety and immunogenicity of influenza A (H1N1) 2009 non-adjuvanted and adjuvanted candidate vaccines. Subjects received two intramuscular injections of one of the candidate vaccines administered 21 days apart. Antibody responses were measured by means of hemagglutination-inhibition assay before and 21 days after each vaccination. The three co-primary immunogenicity end points were the proportion of seroprotection >70%, seroconversion >40%, and the factor increase in the geometric mean titer >2.5. Results A total of 266 participants were enrolled into the study. No deaths or serious adverse events were reported. The most commonly solicited local and systemic adverse events were injection-site pain and headache, respectively. Only three subjects (1.1%) reported severe injection-site pain. Four 2009 influenza A (H1N1) inactivated monovalent candidate vaccines that met the three requirements to evaluate influenza protection, after a single dose, were identified: 15 μg of hemagglutinin antigen without adjuvant; 7.5 μg of hemagglutinin antigen with aluminum hydroxide, MPL and squalene; 3.75 μg of hemagglutinin antigen with aluminum hydroxide and MPL; and 3.75 μg of hemagglutinin antigen with aluminum hydroxide and squalene. Conclusions Adjuvant systems can be safely used in influenza vaccines, including the adjuvant monophosphoryl lipid A (MPL) derived from Bordetella pertussis with squalene and aluminum hydroxide, MPL with aluminum hydroxide, and squalene and aluminum hydroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN]An accurate estimation of the number of people entering / leaving a controlled area is an interesting capability for automatic surveil- lance systems. Potential applications where this technology can be ap- plied include those related to security, safety, energy saving or fraud control. In this paper we present a novel con guration of a multi-sensor system combining both visual and range data specially suited for trou- blesome scenarios such as public transportation. The approach applies probabilistic estimation lters on raw sensor data to create intermediate level hypothesis that are later fused using a certainty-based integration stage. Promising results have been obtained in several tests performed on a realistic test bed scenario under variable lightning conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study we are using multi variate analysis techniques to discriminate signal from background in the fully hadronic decay channel of ttbar events. We give a brief introduction to the role of the Top quark in the standard model and a general description of the CMS Experiment at LHC. We have used the CMS experiment computing and software infrastructure to generate and prepare the data samples used in this analysis. We tested the performance of three different classifiers applied to our data samples and used the selection obtained with the Multi Layer Perceptron classifier to give an estimation of the statistical and systematical uncertainty on the cross section measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustained demand for faster,more powerful chips has beenmet by the availability of chip manufacturing processes allowing for the integration of increasing numbers of computation units onto a single die. The resulting outcome, especially in the embedded domain, has often been called SYSTEM-ON-CHIP (SOC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MPSOC). MPSoC design brings to the foreground a large number of challenges, one of the most prominent of which is the design of the chip interconnection. With a number of on-chip blocks presently ranging in the tens, and quickly approaching the hundreds, the novel issue of how to best provide on-chip communication resources is clearly felt. NETWORKS-ON-CHIPS (NOCS) are the most comprehensive and scalable answer to this design concern. By bringing large-scale networking concepts to the on-chip domain, they guarantee a structured answer to present and future communication requirements. The point-to-point connection and packet switching paradigms they involve are also of great help in minimizing wiring overhead and physical routing issues. However, as with any technology of recent inception, NoC design is still an evolving discipline. Several main areas of interest require deep investigation for NoCs to become viable solutions: • The design of the NoC architecture needs to strike the best tradeoff among performance, features and the tight area and power constraints of the on-chip domain. • Simulation and verification infrastructure must be put in place to explore, validate and optimize the NoC performance. • NoCs offer a huge design space, thanks to their extreme customizability in terms of topology and architectural parameters. Design tools are needed to prune this space and pick the best solutions. • Even more so given their global, distributed nature, it is essential to evaluate the physical implementation of NoCs to evaluate their suitability for next-generation designs and their area and power costs. This dissertation focuses on all of the above points, by describing a NoC architectural implementation called ×pipes; a NoC simulation environment within a cycle-accurate MPSoC emulator called MPARM; a NoC design flow consisting of a front-end tool for optimal NoC instantiation, called SunFloor, and a set of back-end facilities for the study of NoC physical implementations. This dissertation proves the viability of NoCs for current and upcoming designs, by outlining their advantages (alongwith a fewtradeoffs) and by providing a full NoC implementation framework. It also presents some examples of additional extensions of NoCs, allowing e.g. for increased fault tolerance, and outlines where NoCsmay find further application scenarios, such as in stacked chips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As distributed collaborative applications and architectures are adopting policy based management for tasks such as access control, network security and data privacy, the management and consolidation of a large number of policies is becoming a crucial component of such policy based systems. In large-scale distributed collaborative applications like web services, there is the need of analyzing policy interactions and integrating policies. In this thesis, we propose and implement EXAM-S, a comprehensive environment for policy analysis and management, which can be used to perform a variety of functions such as policy property analyses, policy similarity analysis, policy integration etc. As part of this environment, we have proposed and implemented new techniques for the analysis of policies that rely on a deep study of state of the art techniques. Moreover, we propose an approach for solving heterogeneity problems that usually arise when considering the analysis of policies belonging to different domains. Our work focuses on analysis of access control policies written in the dialect of XACML (Extensible Access Control Markup Language). We consider XACML policies because XACML is a rich language which can represent many policies of interest to real world applications and is gaining widespread adoption in the industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the outcomes of a Ph.D. course in telecommunications engineering. It is focused on the optimization of the physical layer of digital communication systems and it provides innovations for both multi- and single-carrier systems. For the former type we have first addressed the problem of the capacity in presence of several nuisances. Moreover, we have extended the concept of Single Frequency Network to the satellite scenario, and then we have introduced a novel concept in subcarrier data mapping, resulting in a very low PAPR of the OFDM signal. For single carrier systems we have proposed a method to optimize constellation design in presence of a strong distortion, such as the non linear distortion provided by satellites' on board high power amplifier, then we developed a method to calculate the bit/symbol error rate related to a given constellation, achieving an improved accuracy with respect to the traditional Union Bound with no additional complexity. Finally we have designed a low complexity SNR estimator, which saves one-half of multiplication with respect to the ML estimator, and it has similar estimation accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My research PhD work is focused on the Electrochemically Generated Luminescence (ECL) investigation of several different homogeneous and heterogeneous systems. ECL is a redox induced emission, a process whereby species, generated at electrodes, undergo a high-energy electron transfer reaction to form excited states that emit light. Since its first application, the ECL technique has become a very powerful analytical tool and has widely been used in biosensor transduction. ECL presents an intrinsically low noise and high sensitivity; moreover, the electrochemical generation of the excited state prevents scattering of the light source: for all these characteristics, it is an elective technique for ultrasensitive immunoassay detection. The majority of ECL systems involve species in solution where the emission occurs in the diffusion layer near to the electrode surface. However, over the past few years, an intense research has been focused on the ECL generated from species constrained on the electrode surface. The aim of my work is to study the behavior of ECL-generating molecular systems upon the progressive increase of their spatial constraints, that is, passing from isolated species in solution, to fluorophores embedded within a polymeric film and, finally, to patterned surfaces bearing “one-dimensional” emitting spots. In order to describe these trends, I use different “dimensions” to indicate the different classes of compounds. My thesis was mostly developed in the electrochemistry group of Bologna with the supervision of Prof Francesco Paolucci and Dr Massimo Marcaccio. With their help and also thanks to their long experience in the molecular and supramolecular ECL fields and in the surface investigations using scanning probe microscopy techniques, I was able to obtain the results herein described. Moreover, during my research work, I have established a new collaboration with the group of Nanobiotechnology of Prof. Robert Forster (Dublin City University) where I spent a research period. Prof. Forster has a broad experience in the biomedical field, especially he focuses his research on film surfaces biosensor based on the ECL transduction. This thesis can be divided into three sections described as follows: (i) in the fist section, homogeneous molecular and supramolecular ECL-active systems, either organic or inorganic species (i.e., corannulene, dendrimers and iridium metal complex), are described. Driving force for this kind of studies includes the search for new luminophores that display on one hand higher ECL efficiencies and on the other simple mechanisms for modulating intensity and energy of their emission in view of their effective use in bioconjugation applications. (ii) in the second section, the investigation of some heterogeneous ECL systems is reported. Redox polymers comprising inorganic luminophores were described. In such a context, a new conducting platform, based on carbon nanotubes, was developed aimed to accomplish both the binding of a biological molecule and its electronic wiring to the electrode. This is an essential step for the ECL application in the field of biosensors. (iii) in the third section, different patterns were produced on the electrode surface using a Scanning Electrochemical Microscopy. I developed a new methods for locally functionalizing an inert surface and reacting this surface with a luminescent probe. In this way, I successfully obtained a locally ECL active platform for multi-array application.