907 resultados para Motivation. English learning task. Interactive Whiteboard
Resumo:
Dans ce mémoire, nous examinons certaines propriétés des représentations distribuées de mots et nous proposons une technique pour élargir le vocabulaire des systèmes de traduction automatique neurale. En premier lieu, nous considérons un problème de résolution d'analogies bien connu et examinons l'effet de poids adaptés à la position, le choix de la fonction de combinaison et l'impact de l'apprentissage supervisé. Nous enchaînons en montrant que des représentations distribuées simples basées sur la traduction peuvent atteindre ou dépasser l'état de l'art sur le test de détection de synonymes TOEFL et sur le récent étalon-or SimLex-999. Finalament, motivé par d'impressionnants résultats obtenus avec des représentations distribuées issues de systèmes de traduction neurale à petit vocabulaire (30 000 mots), nous présentons une approche compatible à l'utilisation de cartes graphiques pour augmenter la taille du vocabulaire par plus d'un ordre de magnitude. Bien qu'originalement développée seulement pour obtenir les représentations distribuées, nous montrons que cette technique fonctionne plutôt bien sur des tâches de traduction, en particulier de l'anglais vers le français (WMT'14).
Resumo:
Cette lecture, tant critique, comparative, et théorique que pédagogique, s’ancre dans le constat, premièrement, qu’il advient aux étudiantEs en littérature de se (re)poser la question des coûts et complicités qu’apprendre à lire et à écrire présuppose aujourd’hui; deuxièmement, que nos pratiques littéraires se trament au sein de lieux empreints de différences, que l’on peut nommer, selon le contexte, métaphore, récit, ville; et, troisièmement, que les efforts et investissements requis sont tout autant couteux et interminable qu’un plaisir et une nécessité politique. Ces conclusions tendent vers l’abstrait et le théorique, mais le langage en lequel elles sont articulées, langage corporel et urbain, de la dépendance et de la violence, cherche d’autant plus une qualité matérielle et concrète. Or, l’introduction propose un survol des lectures et comparaisons de Heroine de Gail Scott qui centre ce projet; identifie les contextes institutionnels, historiques, et personnels qui risquent, ensuite, de décentrer celui-ci. Le premier chapitre permet de cerner le matérialisme littéraire qui me sert de méthode par laquelle la littérature, à la fois, sollicite et offre une réponse à ces interrogations théoriques. Inspirée de l’œuvre de Gail Scott et Réjean Ducharme, premièrement, et de Walter Benjamin, Elisabeth Grosz, et Pierre Macherey ensuite, ‘matérialisme’ fait référence à cette collection de figures de pratiques littéraires et urbaines qui proviennent, par exemple, de Georges Perec, Michel DeCerteau, Barbara Johnson, et Patricia Smart, et qui invitent ensuite une réflexions sur les relations entre corporalité et narrativité, entre la nécessité et la contingence du littéraire. De plus, une collection de figures d’un Montréal littéraire et d’une cité pédagogique, acquis des œuvres de Zygmunt Bauman, Partricia Godbout, et Lewis Mumford, constitue en effet un vocabulaire nous permettant de mieux découvrir (et donc enseigner) ce que lire et apprendre requiert. Le deuxième chapitre propose une lecture comparée de Heroine et des romans des auteures québécoises Anne Dandurand, Marie Gagnon, et Tess Fragoulis, dans le contexte, premièrement, les débats entourant l’institutionnalisation de la littérature (anglo)Québécoise et, deuxièmement, des questions pédagogiques et politiques plus larges et plus urgentes que nous pose, encore aujourd’hui, cette violence récurrente qui s’acharna, par exemple, sur la Polytechnique en 1989. Or, cette intersection de la violence meurtrière, la pratique littéraire, et la pédagogie qui en résulte se pose et s’articule, encore, par le biais d’une collection de figures de styles. En fait, à travers le roman de Scott et de l’œuvre critique qui en fait la lecture, une série de craques invite à reconnaître Heroine comme étant, ce que j’appelle, un récit de dépendance, au sein duquel se concrétise une temporalité récursive et une logique d’introjection nous permettant de mieux comprendre la violence et, par conséquent, le pouvoir d’une pratique littéraire sur laquelle, ensuite, j’appuie ma pédagogie en devenir. Jetant, finalement, un regard rétrospectif sur l’oeuvre dans son entier, la conclusion de ce projet se tourne aussi vers l’avant, c’est-à-dire, vers ce que mes lectures dites matérialistes de la littérature canadienne et québécoise contribuent à mon enseignement de la langue anglaise en Corée du Sud. C’est dans ce contexte que les propos de Jacques Rancière occasionnent un dernier questionnement quant à l’historique des débats et des structures pédagogiques en Corée, d’une part, et, de l’autre, les conclusions que cette lecture de la fiction théorique de Gail Scott nous livre.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
This paper highlights the prediction of Learning Disabilities (LD) in school-age children using two classification methods, Support Vector Machine (SVM) and Decision Tree (DT), with an emphasis on applications of data mining. About 10% of children enrolled in school have a learning disability. Learning disability prediction in school age children is a very complicated task because it tends to be identified in elementary school where there is no one sign to be identified. By using any of the two classification methods, SVM and DT, we can easily and accurately predict LD in any child. Also, we can determine the merits and demerits of these two classifiers and the best one can be selected for the use in the relevant field. In this study, Sequential Minimal Optimization (SMO) algorithm is used in performing SVM and J48 algorithm is used in constructing decision trees.
Resumo:
Learning Disability (LD) is a classification including several disorders in which a child has difficulty in learning in a typical manner, usually caused by an unknown factor or factors. LD affects about 15% of children enrolled in schools. The prediction of learning disability is a complicated task since the identification of LD from diverse features or signs is a complicated problem. There is no cure for learning disabilities and they are life-long. The problems of children with specific learning disabilities have been a cause of concern to parents and teachers for some time. The aim of this paper is to develop a new algorithm for imputing missing values and to determine the significance of the missing value imputation method and dimensionality reduction method in the performance of fuzzy and neuro fuzzy classifiers with specific emphasis on prediction of learning disabilities in school age children. In the basic assessment method for prediction of LD, checklists are generally used and the data cases thus collected fully depends on the mood of children and may have also contain redundant as well as missing values. Therefore, in this study, we are proposing a new algorithm, viz. the correlation based new algorithm for imputing the missing values and Principal Component Analysis (PCA) for reducing the irrelevant attributes. After the study, it is found that, the preprocessing methods applied by us improves the quality of data and thereby increases the accuracy of the classifiers. The system is implemented in Math works Software Mat Lab 7.10. The results obtained from this study have illustrated that the developed missing value imputation method is very good contribution in prediction system and is capable of improving the performance of a classifier.
Resumo:
Unit Commitment Problem (UCP) in power system refers to the problem of determining the on/ off status of generating units that minimize the operating cost during a given time horizon. Since various system and generation constraints are to be satisfied while finding the optimum schedule, UCP turns to be a constrained optimization problem in power system scheduling. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision making task and an efficient Reinforcement Learning solution is formulated considering minimum up time /down time constraints. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
Unit commitment is an optimization task in electric power generation control sector. It involves scheduling the ON/OFF status of the generating units to meet the load demand with minimum generation cost satisfying the different constraints existing in the system. Numerical solutions developed are limited for small systems and heuristic methodologies find difficulty in handling stochastic cost functions associated with practical systems. This paper models Unit Commitment as a multi stage decision task and Reinforcement Learning solution is formulated through one efficient exploration strategy: Pursuit method. The correctness and efficiency of the developed solutions are verified for standard test systems
Resumo:
Das Ziel der Dissertation war die Untersuchung des Computereinsatzes zur Lern- und Betreuungsunterstützung beim selbstgesteuerten Lernen in der Weiterbildung. In einem bisher konventionell durchgeführten Selbstlernkurs eines berufsbegleitenden Studiengangs, der an das Datenmanagement der Bürodatenverarbeitung heranführt, wurden die Kursunterlagen digitalisiert, die Betreuung auf eine online-basierte Lernbegleitung umgestellt und ein auf die neuen Lernmedien abgestimmtes Lernkonzept entwickelt. Dieses neue Lernkonzept wurde hinsichtlich der Motivation und der Akzeptanz von digitalen Lernmedien evaluiert. Die Evaluation bestand aus zwei Teilen: 1. eine formative, den Entwicklungsprozess begleitende Evaluation zur Optimierung der entwickelten Lernsoftware und des eingeführten Lernkonzeptes, 2. eine sowohl qualitative wie quantitative summative Evaluation der Entwicklungen. Ein zentraler Aspekt der Untersuchung war die freie Wahl der Lernmedien (multimediale Lernsoftware oder konventionelles Begleitbuch) und der Kommunikationsmedien (online-basierte Lernplattform oder die bisher genutzten Kommunikationskanäle: E-Mail, Telefon und Präsenztreffen). Diese Zweigleisigkeit erlaubte eine differenzierte Gegenüberstellung von konventionellen und innovativen Lernarrangements. Die Verbindung von qualitativen und quantitativen Vorgehensweisen, auf Grund derer die subjektiven Einstellungen der Probanden in das Zentrum der Betrachtung rückten, ließen einen Blickwinkel auf den Nutzen und die Wirkung der Neuen Medien in Lernprozessen zu, der es erlaubte einige in der Literatur als gängig angesehene Interpretationen in Frage zu stellen und neu zu diskutieren. So konnten durch eine Kategorisierung des Teilnehmerverhaltens nach online-typisch und nicht online-typisch die Ursache-Wirkungs-Beziehungen der in vielen Untersuchungen angeführten Störungen in Online-Seminaren verdeutlicht werden. In den untersuchten Kursen zeigte sich beispielsweise keine Abhängigkeit der Drop-out-Quote von den Lern- und Betreuungsformen und dass diese Quote mit dem neuen Lernkonzept nur geringfügig beeinflusst werden konnte. Die freie Wahl der Lernmedien führte zu einer gezielten Nutzung der multimedialen Lernsoftware, wodurch die Akzeptanz dieses Lernmedium stieg. Dagegen war die Akzeptanz der Lernenden gegenüber der Lernbegleitung mittels einer Online-Lernplattform von hoch bis sehr niedrig breit gestreut. Unabhängig davon reichte in allen Kursdurchgängen die Online-Betreuung nicht aus, so dass Präsenztreffen erbeten wurde. Hinsichtlich der Motivation war die Wirkung der digitalen Medien niedriger als erwartet. Insgesamt bieten die Ergebnisse Empfehlungen für die Planung und Durchführung von computerunterstützten, online-begleiteten Kursen.
Resumo:
Self-adaptive software provides a profound solution for adapting applications to changing contexts in dynamic and heterogeneous environments. Having emerged from Autonomic Computing, it incorporates fully autonomous decision making based on predefined structural and behavioural models. The most common approach for architectural runtime adaptation is the MAPE-K adaptation loop implementing an external adaptation manager without manual user control. However, it has turned out that adaptation behaviour lacks acceptance if it does not correspond to a user’s expectations – particularly for Ubiquitous Computing scenarios with user interaction. Adaptations can be irritating and distracting if they are not appropriate for a certain situation. In general, uncertainty during development and at run-time causes problems with users being outside the adaptation loop. In a literature study, we analyse publications about self-adaptive software research. The results show a discrepancy between the motivated application domains, the maturity of examples, and the quality of evaluations on the one hand and the provided solutions on the other hand. Only few publications analysed the impact of their work on the user, but many employ user-oriented examples for motivation and demonstration. To incorporate the user within the adaptation loop and to deal with uncertainty, our proposed solutions enable user participation for interactive selfadaptive software while at the same time maintaining the benefits of intelligent autonomous behaviour. We define three dimensions of user participation, namely temporal, behavioural, and structural user participation. This dissertation contributes solutions for user participation in the temporal and behavioural dimension. The temporal dimension addresses the moment of adaptation which is classically determined by the self-adaptive system. We provide mechanisms allowing users to influence or to define the moment of adaptation. With our solution, users can have full control over the moment of adaptation or the self-adaptive software considers the user’s situation more appropriately. The behavioural dimension addresses the actual adaptation logic and the resulting run-time behaviour. Application behaviour is established during development and does not necessarily match the run-time expectations. Our contributions are three distinct solutions which allow users to make changes to the application’s runtime behaviour: dynamic utility functions, fuzzy-based reasoning, and learning-based reasoning. The foundation of our work is a notification and feedback solution that improves intelligibility and controllability of self-adaptive applications by implementing a bi-directional communication between self-adaptive software and the user. The different mechanisms from the temporal and behavioural participation dimension require the notification and feedback solution to inform users on adaptation actions and to provide a mechanism to influence adaptations. Case studies show the feasibility of the developed solutions. Moreover, an extensive user study with 62 participants was conducted to evaluate the impact of notifications before and after adaptations. Although the study revealed that there is no preference for a particular notification design, participants clearly appreciated intelligibility and controllability over autonomous adaptations.
Resumo:
In der gesamten Hochschullandschaft begleiten eLearning-Szenarien organisatorische Erneuerungsprozesse und stellen damit ein vielversprechendes Instrument zur Unterstützung und Verbesserung der klassischen Präsenzlehre dar. Davon ausgehend wurde von 2010 bis 2011 das Kasseler Sportspiel-Modell um die integrative Vermittlung der Einkontakt-Rückschlagspiele erweitert (Heyer, Albert, Scheid & Blömeke-Rumpf, 2011) und in einen modularisierten eLearning-Content, bestehend aus insgesamt 4 Modulen (17 Lernkurse, 171 Kursseiten, 73 Grafiken, 73 Videos, 38 Lernkontrollfragen), eingebunden. Dieser Content wurde im Rahmen einer Evaluationsstudie in Blended Learning Seminaren, welche die didaktischen Vorteile von Online- und Präsenzphasen zu einer Seminarform vereinen (Treumann, Ganguin & Arens, 2012), vergleichend zur klassischen Präsenzlehre im Sportstudium betrachtet. Die Studie gliedert sich in insgesamt drei Phasen: 1.) Pilotstudie am IfSS in Kassel (WS 2011/12; N=17, Lehramt), 2.) Hauptuntersuchung I am IfSS in Kassel (SS 2012; N=67, Lehramt) und 3.) Hauptuntersuchung II am IfS in Frankfurt a. M. (WS 2012/13; N=112, BA). Mittels varianzanalytischer Untersuchungsverfahren erfasst die Studie auf drei unterschiedlichen Qualitätsebenen folgende Aspekte der Lehr-Lernforschung: 1.) Ebene der Inputqualität: Bewertung der Seminarform (BS), 2.) Ebene der Prozessqualität: Motivation (SELLMO-ST), Lernstrategien (LIST) und computerbezogene Einstellung (FIDEC), 3.) Ebene der Outcomequalität: Lernleistung (Abschlusstest und Transferaufgabe). In der vergleichenden Betrachtung der beiden Hauptuntersuchungen erfolgt eine Gegenüberstellung von je einem Präsenzseminar zu zwei unterschiedlichen Varianten von Blended Learning Seminaren (BL-1, BL-2). Während der Online-Phasen bearbeiten die Sportstudierenden in BL-1 die Module in Lerngruppen. Die Teilnehmer in BL-2 führen in diesen Phasen zusätzlich persönliche Lerntagebücher. Dies soll zu einer vergleichsweise intensiveren Auseinandersetzung mit den Inhalten der Lernkurse sowie dem eigenen Lernprozess auf kognitiver und metakognitiver Ebene anregen (Hübner, Nückles & Renkl, 2007) und folglich zu besseren Ergebnissen auf den drei Qualitätsebenen führen. Die Ergebnisse der beiden Hauptuntersuchungen zeigen in der direkten, standortbezogenen Gegenüberstellung aller drei Seminarformen überwiegend keine statistisch signifikanten Unterschiede. Der erwartete positive Effekt durch die Einführung des Lerntagebuchs bleibt ebenfalls aus. Im standortübergreifenden Vergleich der Blended-Learning-Seminare ist bemerkenswert, dass die Probanden aus Frankfurt gegenüber ihrer Seminarform eine tendenziell kritischere Haltung einnehmen, was möglicherweise mit den vorherrschenden, unterschiedlichen Studiengängen – Lehramt und BA – korrespondiert. Zusammenfassend lässt sich somit für den untersuchten Bereich der Rückschlagspielvermittlung festhalten, dass Blended-Learning-Seminare eine qualitativ gleichwertige Alternative zur klassischen Präsenzlehre im Sportstudium darstellen.
Resumo:
This thesis presents a perceptual system for a humanoid robot that integrates abilities such as object localization and recognition with the deeper developmental machinery required to forge those competences out of raw physical experiences. It shows that a robotic platform can build up and maintain a system for object localization, segmentation, and recognition, starting from very little. What the robot starts with is a direct solution to achieving figure/ground separation: it simply 'pokes around' in a region of visual ambiguity and watches what happens. If the arm passes through an area, that area is recognized as free space. If the arm collides with an object, causing it to move, the robot can use that motion to segment the object from the background. Once the robot can acquire reliable segmented views of objects, it learns from them, and from then on recognizes and segments those objects without further contact. Both low-level and high-level visual features can also be learned in this way, and examples are presented for both: orientation detection and affordance recognition, respectively. The motivation for this work is simple. Training on large corpora of annotated real-world data has proven crucial for creating robust solutions to perceptual problems such as speech recognition and face detection. But the powerful tools used during training of such systems are typically stripped away at deployment. Ideally they should remain, particularly for unstable tasks such as object detection, where the set of objects needed in a task tomorrow might be different from the set of objects needed today. The key limiting factor is access to training data, but as this thesis shows, that need not be a problem on a robotic platform that can actively probe its environment, and carry out experiments to resolve ambiguity. This work is an instance of a general approach to learning a new perceptual judgment: find special situations in which the perceptual judgment is easy and study these situations to find correlated features that can be observed more generally.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
Blogging has become one of the key ingredients of the so-called socials networks. This phenomenon has indeed invaded the world of education. Connections between people, comments on each other posts, and assessment of innovation are usually interesting characteristics of blogs related to students and scholars. Blogs have become a kind of new form of authority, bringing about (divergent) discussions which lead to creation of knowledge. The use of blogs as an innovative, educational tool is not at all new. However, their use in universities is not very widespread yet. Blogging for personal affairs is rather commonplace, but blogging for professional affairs – teaching, research and service, is scarce, despite the availability of ready-to-use, free tools. Unfortunately, Information Society has not reached yet enough some universities: not only are (student) blogs scarcely used as an educational tool, but it is quite rare to find a blog written by University professors. The Institute of Computational Chemistry of the University of Girona and the Department of Chemistry of the Universitat Autònoma de Barcelona has joined forces to create “InnoCiència”, a new Group on Digital Science Communitation. This group, formed by ca. ten researchers, has promoted the use of blogs, twitters. wikis and other tools of Web 2.0 in activities in Catalonia concerning the dissemination of Science, like Science Week, Open Day or Researchers’ Night. Likewise, its members promote use of social networking tools in chemistry- and communication-related courses. This communication explains the outcome of social-network experiences with teaching undergraduate students and organizing research communication events. We provide live, hands-on examples and interactive ground to show how blogs and twitters can be used to enhance the yield of teaching and research. Impact of blogging and other social networking tools on the outcome of the learning process is very depending on the target audience and the environmental conditions. A few examples are provided and some proposals to use these techniques efficiently to help students are hinted
Resumo:
There is a body of literature that suggests that student self-assessment is a main goal in higher education (Boud et al., 1995; Tan, 2008); moreover new forms of work organization require a high level of skills and competences. The efforts to deal with competence gaps could be developed at many levels, such as employers, educational institutions, individuals and public agents. Employers could put into practice competence development programs to moderate these gaps. Educational institutions can restructure the curriculum to support students in attaining the competences that are essential in the labour market. Individuals themselves may deploy their resources (time and money) in general or specific competence training. Further, government agencies could fund competence promotion programs. Such challenges for education drive change in learning curricula and method, to properly include the competences required for developing global workers who can move beyond basic competence, to enhanced flexibility and adaptability. In performance assessment methods, there is a shift from the traditional exam-based assessments to more innovative task assessment, which considers performance in multiple different tasks carry out by students. ICTs make it technologically feasible to carry out a complete and complex selfassessment of competences, which provides immediate results to students or other recipients. In the case of students, the evaluation of competences is relevant as developing competences is part - if not all - of the objectives of education. Therefore, it is an important element of the quality of educational organizations (e.g., universities), and of their organizational success. Further, educational organizations may put special emphasis on some differentiating competences, which can be a means of positioning and differentiation from competitors. Competence assessment is an instrument to make students conscious of their strengths and weaknesses, leading to higher motivation to develop their own learning career
Resumo:
Our work is focused on alleviating the workload for designers of adaptive courses on the complexity task of authoring adaptive learning designs adjusted to specific user characteristics and the user context. We propose an adaptation platform that consists in a set of intelligent agents where each agent carries out an independent adaptation task. The agents apply machine learning techniques to support the user modelling for the adaptation process