978 resultados para Montmorillonite Clays
Resumo:
Results of study of bottom sediments near Iceland and on the Jan Mayen Island are reported. It was found that in recent sediments chemical elements are mainly associated with pyro- and volcanoclastics. In some areas adjusted to deep-seated faults ancient iron-manganese crusts and sediments occur. They are rich in Ni, Co, V, Cu, Mo, Cd and other elements associated with endogenic matter.
Resumo:
The book is devoted to regularities of spatial distribution, mineralogy and geochemistry of hydrothermal and hydrothermal-sedimentary manifestations of the Mid-Atlantic Ridge rift zone.
Resumo:
Ocean Drilling Program Site 975 is located near the base of the Menorca Rise in the South Balearic Basin of the western Mediterranean Sea. Coring at this site penetrated the Pliocene/Miocene boundary and recovered a sequence of sediments that represent the final stages of salt deposition and the transition from evaporitic to open marine conditions at the end of the Miocene (Messinian). Detailed petrographic observations and bulk mineralogical analyses by X-ray diffraction form the basis for preliminary interpretations of depositional environments for this section. Gypsum is thought to have been deposited in an evaporating basin below wave base. Cycles consisting of a clay layer overlain by gypsiferous chalk, laminated gypsum, and finally pinch-and-swell gypsum suggest upsection increases in salinity. The gypsum section is overlain by two exotic sand layers thought to mark events of fresher water (marine or meteoric) inflow to the basin. Gypsum deposition terminated and was replaced by inorganic precipitation of micritic calcite with periodic, variable dilution by fine-grained terrigenous sediment. The micritic sediments have fine, slightly wavy, laminations indicating either an algal/microbial mat origin, or varve-like fluctuations in deposition, perhaps in a deep basin. The Pliocene/Miocene boundary falls within an interval of banded micritic silty clays that reflect the final environmental fluctuations during the transition to the open marine conditions of the Pliocene.
Resumo:
Distribution of Fe, Mn, P, Ti, Cu, Ni, Co, V, Cr, W, Mo, and As in the surface sediment layer on the section from the Hawaiian Islands to the coast of Mexico (Mexico section) is studied. Contents of all studied elements increase from biogenic-terrigenous sediments off the coast of Mexico to pelagic red clays of the Northeast Basin, and more sharply for mobile elements - Mn, Mo, Cu, Ni, Co, and As. In near Hawaii sediments rich in coarsely fragmented volcanic-terrigenous and pyroclastic material of basaltic composition with high contents of Ti, Fe, V, Cr, W, and P, contents of these elements increase sharply, and contents of Mn, Mo, Ni, Co, and Cu for the same reason decrease sharply in comparison with red clay. Abnormally high contents of Mn, Mo, Cu, Ni, Co, and As in the upper layer of hemipelagic and transition sediments of the Mexico section result from diagenetic redistribution and their accumulation on the surface. Processes of diagenetic redistribution in hemipelagic and transition sediment mass of the Mexico section are more rapid than in similar sediments of the Japan section due lower sedimentation rates and higher initial concentrations of Mn. Basic similarity of element distribution regularities in sediments of Japan and Mexico sections is shown.
Resumo:
The hydrothermal mounds on the southern flank of the Galapagos Spreading Center are characterized by the following main features: 1) They are located over a young basement (0.5 to 0.85 m.y. of age) in a region known for its high sedimentation rate (about 5 cm/10**3 y.) because it is part of the equatorial high biological productivity zone. 2) They are located in a region with generally high heat flow (8 to 10 HFU). The highest heat-flow measurements (up to 10**3 HFU) correspond to mound peaks (Williams et al., 1979), where temperatures up to 15°C were measured during a dive of the submersible Alvin (Corliss et al., 1978). 3) They are often located on small vertical faults which displace the basement by a few meters (Lonsdale, 1977) and affect the 25- to 50-meter-thick sediment cover. Most of these characteristics have also been observed in the other three known cases of hydrothermal deposits with mineral parageneses similar to that of the Galapagos mounds. However, the case of the hydrothermal mounds south of the Galapagos Spreading Center is unique because of the unusual thickness of the hydrothermal deposits present. The mounds are composed of several, up to 4.5-meter-thick, layers of green clays which, in one case (Hole 509B), are overlain by about 1.4 meters of Mn-oxide crust. We suspect that such a large accumulation of hydrothermal products results from the "funnelling" of the hydrothermal solutions exiting from a highly permeable basement along the faults. This chapter reports a preliminary study of those green clays collected by hydraulic piston coring of the Galapagos mounds during Deep Sea Drilling Project (DSDP) Leg 70 of the D/V Glomar Challenger. Green clays have also been reported from three presently or recently active hydrothermal areas in or close to spreading centers.
Resumo:
Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed for major elements, trace elements, and some rare earth elements by X-ray fluorescence. Selected samples also underwent X-ray diffraction (XRD) analysis for mineral determination. The results shed light on sediment provenance when combined with shipboard sediment descriptions, smear slide study, and XRD. The oldest sediments recovered (Site 1108) of middle-late Miocene age include volcanogenic muds with distinctive high MgO and K2O, indicative of a relatively basic calc-alkaline source related to an inferred Miocene forearc succession. The forearc basement, composed of diabase and basalt, was locally exposed (Site 1109) and eroded in the late Miocene (<5.4-9.93 Ma), giving rise to fluvial conglomerates (Sites 1109, 1115, and 1118). Chemically distinctive fine-grained claystones and siltstones (with relatively high Ti, low K) are compatible with derivation from tropically weathered basic igneous rocks, correlated with the Paleogene Papuan ophiolite. Overlying latest Miocene-Pleistocene fine-grained sediments throughout the Woodlark Basin were partly derived from calc-alkaline volcanic sources. However, relatively high abundances of Al2O3 and related element oxides (K2O and Na2O) and trace elements (e.g., Rb and Y) reflect an additional terrigenous input throughout the basin, correlated with pelitic metamorphic rocks exposed on Papua New Guinea and adjacent areas. In addition, sporadic high abundances of Cr and Ni, some other trace metals, and related minerals (talc, crysotile, and chlorite) reflect input from an ophiolitic terrain dominated by ultramafic rocks, correlated with the Paleogene Papuan ophiolite. The source areas possibly included serpentinized ultramafic ophiolitic rocks exposed in the Papua New Guinea interior highlands. Chemical evidence further indicates that fine-grained terrigenous sediment reached the Woodlark Basin throughout its entire late Miocene-Holocene history. Distinctive high-K volcanogenic muds rich in tephra and volcanic ash layers that appear at <2.3 Ma (Sites 1109 and 1115) are indicative of high-K calc-alkaline volcanic centers, possibly located in the Dawson Strait, Moresby Strait, or Dobu Seamount area. Chemical diagenesis of fine-grained sediments within the Woodlark Basin is reflected in clay neomorphism and localized formation of minerals including dolomite, ankerite, and zeolite but has had little effect on the bulk chemical composition of most samples.
Resumo:
A thick Neogene section was recovered in the upper ~300 m of Ocean Drilling Program Hole 1138A, drilled on the Central Kerguelen Plateau in the Indian sector of the Southern Ocean. Sediment lithologies consist primarily of mixed carbonate and biosiliceous clays and oozes, with several thin (1-3 cm) tephra horizons. The tephras are glass rich, well sorted, and dominantly trachytic to rhyolitic in composition. Volcaniclastic material in these horizons is interpreted to have originated from Heard Island, 180 km northwest of Site 1138, and was likely emplaced through both primary ash fall and turbiditic, submarine flows. A Neogene age-depth model for Hole 1138A is constructed primarily from 36 diatom biostratigraphic datums. Nannofossil and planktonic foraminifer biostratigraphy provides supporting age information. Additionally, four high-precision 40Ar-39Ar ages are derived from ash and tephra horizons, and these radiometric ages are in close agreement with the biostratigraphic ages. The integrated age-depth model reveals a reasonably complete lower Miocene to upper Pleistocene section in Hole 1138A, with the exception of a ~1-m.y. hiatus at the Miocene/Pliocene boundary. Another possible hiatus is also identified at the Oligocene/Miocene boundary. High Neogene sedimentation rates and the presence of both calcareous and siliceous microfossils, combined with datable tephra horizons, establish Site 1138 as a suitable target for future drilling legs with paleoceanographic objectives. This report also proposes two new diatom species, Fragilariopsis heardensis and Azpeitia harwoodii, from Pliocene strata of Hole 1138A.
Resumo:
Drilling at three DSDP drill sites on the western margin of the Pacific Ocean off the coast of Japan yielded thick sequences of hemipelagic muds and clays generally depleted of calcareous nannofossils. Operations at Sites 582 and 583 recovered dominantly Quaternary sediments. The Pliocene/Pleistocene boundary was reached near the bottom of Hole 582B. At both sites, preserved coccolith populations contained generally few to common nannoliths. The effects of reworking were evident throughout most sections at these two sites. Drilling at Site 584 in the Japan Trench recovered Holocene to Miocene sediments. Populations of nannofossils from this site were generally more depleted than those from the two Nankai Trough sites. Reworking within these sections appears to be much less severe than in samples from the more southern sites.
Resumo:
In this monograph on the basis of materials obtained by the author and his colleagues in Arctic expeditions of 1991-2005 and of published data results of studies effect of aerosols on environmental conditions and marine sedimentation in the Arctic are summarizes. Processes of aeolian transport and transformation of sedimentary material from sources to places of its accumulation in bottom sediments are described. Results of this study can be used to assess current state of ecosystem of Arctic seas and as a background for evaluation of possible human impact on nature during exploration of mineral resources of the Arctic shelf. For oceanographers, geochemists, geoecologists.
Resumo:
Sorption of volatile hydrocarbon gases (VHCs) to marine sediments is a recognized phenomenon that has been investigated in the context of petroleum exploration. However, little is known about the biogeochemistry of sorbed methane and higher VHCs in environments that are not influenced by thermogenic processes. This study evaluated two different extraction protocols for sorbed VHCs, used high pressure equipment to investigate the sorption of methane to pure clay mineral phases, and conducted a geochemical and mineralogical survey of sediment samples from different oceanographic settings and geochemical regimes that are not significantly influenced by thermogenic gas. Extraction of sediments under alkaline conditions yielded higher concentrations of sorbed methane than the established protocol for acidic extraction. Application of alkaline extraction in the environmental survey revealed the presence of substantial amounts of sorbed methane in 374 out of 411 samples (91%). Particularly high amounts, up to 2.1 mmol kg**-1 dry sediment, were recovered from methanogenic sediments. Carbon isotopic compositions of sorbed methane suggested substantial contributions from biogenic sources, both in sulfate-depleted and sulfate-reducing sediments. Carbon isotopic relationships between sorbed and dissolved methane indicate a coupling of the two pools. While our sorption experiments and extraction conditions point to an important role for clay minerals as sorbents, mineralogical analyses of marine sediments suggest that variations in mineral composition are not controlling variations in quantities of sorbed methane. We conclude that the distribution of sorbed methane in sediments is strongly influenced by in situ production.
Resumo:
Mineral and chemical compositions, as well as conditions of formation of clay sediments in major structural elements of the Pacific Ocean floor with different ages are under consideration in the monograph. Depending on evolution of the region two ways of clay sediment formation are identified: terrigenous and authigenic. It is shown that terrigenous clay sediments predominate in marginal parts of the Pacific Ocean. Authigenic mineral formation occurring in the basal part of the sedimentary cover primarily results from removal of material from underlying basalts. This material is released during secondary alteration of the basalts due to their interaction with sea water, as well as with deep solutions.
Resumo:
The marine transgression Into the Baltic Sea through the Great Belt took place around 9,370 calibrated C-14-years B.P. The sedimentary sequence from the early brackish phase and the change to marine conditions has been investigated in detail through C-14-datings, and oxygen and carbon isotope measurements, and is interpreted by comparison with modern analogs. The oldest brackish sediments are the strongly laminated clays and silts rich in organic carbon followed by non-laminated heavily bioturbated silts. The bedding and textural characteristics and stable isotope analyses on Ammonia beccarii (dextral) and A. beccarii (sinistral) show that the deposltlonal conditions respond to a change at about 9,100 cal. a B.P. from an unstratified brackish water environment in the initial stage of the Littorina Transgression to a thermohaline layered milieu in the upper unit. The oxygen isotope results indicate that the bottom waters of this latter period had salinities and temperatures comparable to the present day Kiel Bay waters. The isotopic composition of the total organic carbon and the d13C-values of A. beccarii reveal a gradual change from an initially lacustrine/terrestrial provenance toward a brackish/marine dominated depositional environment. A stagnation of the sea level at around 9,100 to 9,400 B.P. is indicated.
Resumo:
Chemical analyses for calcium carbonate, organic carbon, and major constituents (Al, Ti, Ca, Mg, K, Fe) of bulk sediments collected in Hole 671B have been carried out. Organic carbon contents in Pleistocene through middle Miocene sediments above the zone of decollement are very low (<0.1%); below the decollement considerably higher concentrations of organic carbon occur (up to 1 %). Changes in Ti/Al and Fe/Al ratios are minor, but K/Al and Mg/Al ratios show clear trends with the age of the sediments. Preliminary comparisons of these ratios with mineralogic information on clays indicate good correspondence with clay abundances. Calculations of the mass flux of magnesium from the overlying ocean into the pore fluids suggest that addition of magnesium to the sediments is difficult to detect, especially in the absence of a background reference concentration.