973 resultados para Monte Carlo à chaîne de Markov


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluate the performance of several specification tests for Markov regime-switching time-series models. We consider the Lagrange multiplier (LM) and dynamic specification tests of Hamilton (1996) and Ljung–Box tests based on both the generalized residual and a standard-normal residual constructed using the Rosenblatt transformation. The size and power of the tests are studied using Monte Carlo experiments. We find that the LM tests have the best size and power properties. The Ljung–Box tests exhibit slight size distortions, though tests based on the Rosenblatt transformation perform better than the generalized residual-based tests. The tests exhibit impressive power to detect both autocorrelation and autoregressive conditional heteroscedasticity (ARCH). The tests are illustrated with a Markov-switching generalized ARCH (GARCH) model fitted to the US dollar–British pound exchange rate, with the finding that both autocorrelation and GARCH effects are needed to adequately fit the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uninhabited aerial vehicles (UAVs) are a cutting-edge technology that is at the forefront of aviation/aerospace research and development worldwide. Many consider their current military and defence applications as just a token of their enormous potential. Unlocking and fully exploiting this potential will see UAVs in a multitude of civilian applications and routinely operating alongside piloted aircraft. The key to realising the full potential of UAVs lies in addressing a host of regulatory, public relation, and technological challenges never encountered be- fore. Aircraft collision avoidance is considered to be one of the most important issues to be addressed, given its safety critical nature. The collision avoidance problem can be roughly organised into three areas: 1) Sense; 2) Detect; and 3) Avoid. Sensing is concerned with obtaining accurate and reliable information about other aircraft in the air; detection involves identifying potential collision threats based on available information; avoidance deals with the formulation and execution of appropriate manoeuvres to maintain safe separation. This thesis tackles the detection aspect of collision avoidance, via the development of a target detection algorithm that is capable of real-time operation onboard a UAV platform. One of the key challenges of the detection problem is the need to provide early warning. This translates to detecting potential threats whilst they are still far away, when their presence is likely to be obscured and hidden by noise. Another important consideration is the choice of sensors to capture target information, which has implications for the design and practical implementation of the detection algorithm. The main contributions of the thesis are: 1) the proposal of a dim target detection algorithm combining image morphology and hidden Markov model (HMM) filtering approaches; 2) the novel use of relative entropy rate (RER) concepts for HMM filter design; 3) the characterisation of algorithm detection performance based on simulated data as well as real in-flight target image data; and 4) the demonstration of the proposed algorithm's capacity for real-time target detection. We also consider the extension of HMM filtering techniques and the application of RER concepts for target heading angle estimation. In this thesis we propose a computer-vision based detection solution, due to the commercial-off-the-shelf (COTS) availability of camera hardware and the hardware's relatively low cost, power, and size requirements. The proposed target detection algorithm adopts a two-stage processing paradigm that begins with an image enhancement pre-processing stage followed by a track-before-detect (TBD) temporal processing stage that has been shown to be effective in dim target detection. We compare the performance of two candidate morphological filters for the image pre-processing stage, and propose a multiple hidden Markov model (MHMM) filter for the TBD temporal processing stage. The role of the morphological pre-processing stage is to exploit the spatial features of potential collision threats, while the MHMM filter serves to exploit the temporal characteristics or dynamics. The problem of optimising our proposed MHMM filter has been examined in detail. Our investigation has produced a novel design process for the MHMM filter that exploits information theory and entropy related concepts. The filter design process is posed as a mini-max optimisation problem based on a joint RER cost criterion. We provide proof that this joint RER cost criterion provides a bound on the conditional mean estimate (CME) performance of our MHMM filter, and this in turn establishes a strong theoretical basis connecting our filter design process to filter performance. Through this connection we can intelligently compare and optimise candidate filter models at the design stage, rather than having to resort to time consuming Monte Carlo simulations to gauge the relative performance of candidate designs. Moreover, the underlying entropy concepts are not constrained to any particular model type. This suggests that the RER concepts established here may be generalised to provide a useful design criterion for multiple model filtering approaches outside the class of HMM filters. In this thesis we also evaluate the performance of our proposed target detection algorithm under realistic operation conditions, and give consideration to the practical deployment of the detection algorithm onboard a UAV platform. Two fixed-wing UAVs were engaged to recreate various collision-course scenarios to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. Based on this collected data, our proposed detection approach was able to detect targets out to distances ranging from about 400m to 900m. These distances, (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning ahead of impact that approaches the 12.5 second response time recommended for human pilots. Furthermore, readily available graphic processing unit (GPU) based hardware is exploited for its parallel computing capabilities to demonstrate the practical feasibility of the proposed target detection algorithm. A prototype hardware-in- the-loop system has been found to be capable of achieving data processing rates sufficient for real-time operation. There is also scope for further improvement in performance through code optimisations. Overall, our proposed image-based target detection algorithm offers UAVs a cost-effective real-time target detection capability that is a step forward in ad- dressing the collision avoidance issue that is currently one of the most significant obstacles preventing widespread civilian applications of uninhabited aircraft. We also highlight that the algorithm development process has led to the discovery of a powerful multiple HMM filtering approach and a novel RER-based multiple filter design process. The utility of our multiple HMM filtering approach and RER concepts, however, extend beyond the target detection problem. This is demonstrated by our application of HMM filters and RER concepts to a heading angle estimation problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methicillin-resistant Staphylococcus Aureus (MRSA) is a pathogen that continues to be of major concern in hospitals. We develop models and computational schemes based on observed weekly incidence data to estimate MRSA transmission parameters. We extend the deterministic model of McBryde, Pettitt, and McElwain (2007, Journal of Theoretical Biology 245, 470–481) involving an underlying population of MRSA colonized patients and health-care workers that describes, among other processes, transmission between uncolonized patients and colonized health-care workers and vice versa. We develop new bivariate and trivariate Markov models to include incidence so that estimated transmission rates can be based directly on new colonizations rather than indirectly on prevalence. Imperfect sensitivity of pathogen detection is modeled using a hidden Markov process. The advantages of our approach include (i) a discrete valued assumption for the number of colonized health-care workers, (ii) two transmission parameters can be incorporated into the likelihood, (iii) the likelihood depends on the number of new cases to improve precision of inference, (iv) individual patient records are not required, and (v) the possibility of imperfect detection of colonization is incorporated. We compare our approach with that used by McBryde et al. (2007) based on an approximation that eliminates the health-care workers from the model, uses Markov chain Monte Carlo and individual patient data. We apply these models to MRSA colonization data collected in a small intensive care unit at the Princess Alexandra Hospital, Brisbane, Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Markov random fields (MRF) are popular in image processing applications to describe spatial dependencies between image units. Here, we take a look at the theory and the models of MRFs with an application to improve forest inventory estimates. Typically, autocorrelation between study units is a nuisance in statistical inference, but we take an advantage of the dependencies to smooth noisy measurements by borrowing information from the neighbouring units. We build a stochastic spatial model, which we estimate with a Markov chain Monte Carlo simulation method. The smooth values are validated against another data set increasing our confidence that the estimates are more accurate than the originals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monte Carlo simulation methods involving splitting of Markov chains have been used in evaluation of multi-fold integrals in different application areas. We examine in this paper the performance of these methods in the context of evaluation of reliability integrals from the point of view of characterizing the sampling fluctuations. The methods discussed include the Au-Beck subset simulation, Holmes-Diaconis-Ross method, and generalized splitting algorithm. A few improvisations based on first order reliability method are suggested to select algorithmic parameters of the latter two methods. The bias and sampling variance of the alternative estimators are discussed. Also, an approximation to the sampling distribution of some of these estimators is obtained. Illustrative examples involving component and series system reliability analyses are presented with a view to bring out the relative merits of alternative methods. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximate Bayesian computation (ABC) is a popular technique for analysing data for complex models where the likelihood function is intractable. It involves using simulation from the model to approximate the likelihood, with this approximate likelihood then being used to construct an approximate posterior. In this paper, we consider methods that estimate the parameters by maximizing the approximate likelihood used in ABC. We give a theoretical analysis of the asymptotic properties of the resulting estimator. In particular, we derive results analogous to those of consistency and asymptotic normality for standard maximum likelihood estimation. We also discuss how sequential Monte Carlo methods provide a natural method for implementing our likelihood-based ABC procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work addresses the problem of estimating the optimal value function in a Markov Decision Process from observed state-action pairs. We adopt a Bayesian approach to inference, which allows both the model to be estimated and predictions about actions to be made in a unified framework, providing a principled approach to mimicry of a controller on the basis of observed data. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from theposterior distribution over the optimal value function. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the inverse reinforcement learning problem, that is, the problem of learning from, and then predicting or mimicking a controller based on state/action data. We propose a statistical model for such data, derived from the structure of a Markov decision process. Adopting a Bayesian approach to inference, we show how latent variables of the model can be estimated, and how predictions about actions can be made, in a unified framework. A new Markov chain Monte Carlo (MCMC) sampler is devised for simulation from the posterior distribution. This step includes a parameter expansion step, which is shown to be essential for good convergence properties of the MCMC sampler. As an illustration, the method is applied to learning a human controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a continuous time Markov chain (CTMC) based sequential analytical approach for composite generation and transmission systems reliability assessment. The basic idea is to construct a CTMC model for the composite system. Based on this model, sequential analyses are performed. Various kinds of reliability indices can be obtained, including expectation, variance, frequency, duration and probability distribution. In order to reduce the dimension of the state space, traditional CTMC modeling approach is modified by merging all high order contingencies into a single state, which can be calculated by Monte Carlo simulation (MCS). Then a state mergence technique is developed to integrate all normal states to further reduce the dimension of the CTMC model. Moreover, a time discretization method is presented for the CTMC model calculation. Case studies are performed on the RBTS and a modified IEEE 300-bus test system. The results indicate that sequential reliability assessment can be performed by the proposed approach. Comparing with the traditional sequential Monte Carlo simulation method, the proposed method is more efficient, especially in small scale or very reliable power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tâche de maintenance ainsi que la compréhension des programmes orientés objet (OO) deviennent de plus en plus coûteuses. L’analyse des liens de dépendance peut être une solution pour faciliter ces tâches d’ingénierie. Cependant, analyser les liens de dépendance est une tâche à la fois importante et difficile. Nous proposons une approche pour l'étude des liens de dépendance internes pour des programmes OO, dans un cadre probabiliste, où les entrées du programme peuvent être modélisées comme un vecteur aléatoire, ou comme une chaîne de Markov. Dans ce cadre, les métriques de couplage deviennent des variables aléatoires dont les distributions de probabilité peuvent être étudiées en utilisant les techniques de simulation Monte-Carlo. Les distributions obtenues constituent un point d’entrée pour comprendre les liens de dépendance internes entre les éléments du programme, ainsi que leur comportement général. Ce travail est valable dans le cas où les valeurs prises par la métrique dépendent des entrées du programme et que ces entrées ne sont pas fixées à priori. Nous illustrons notre approche par deux études de cas.