984 resultados para Mollusks, Fossil.
Resumo:
SINE (short interspersed element) insertion analysis elucidates contentious aspects in the phylogeny of toothed whales and dolphins (Odontoceti), especially river dolphins. Here, we characterize 25 informative SINEs inserted into unique genomic loci during evolution of odontocetes to construct a cladogram. and determine a total of 2.8 kb per taxon of the flanking sequences of these SINE loci to estimate divergence times among lineages. We demonstrate that: (i) Odontocetes are monophyletic; (ii) Ganges River dolphins, beaked whales, and ocean dolphins diverged (in this order) after sperm whales; (iii) three other river dolphin taxa, namely the Amazon, La Plata, and Yangtze river dolphins, form a monophyletic group with Yangtze River dolphins being the most basal; and (iv) the rapid radiation of extant cetacean lineages occurred some 28-33 million years B.P., in strong accord with the fossil record. The combination of SINE and flanking sequence analysis suggests a topology and set of divergence times for odontocete relationships, offering alternative explanations for several long-standing problems in cetacean evolution.
Resumo:
Phylogeny of the specialized schizothoracine fishes (Teleostei: Cypriniformes: Cyprinidae). Zoological Studies 40(2). 147-157. To elucidate phylogenetic relationships within the specialized schizothoracine fishes, we used 41 variable osteological and external characters among this groups, three species of Schizothorax, and 1 fossil species. When the 3 species of Schizothorax were designated as an outgroup and all 41 characters were set as unordered with equal weighting, the data matrix yielded a single most-parsimonious tree with a tree length of 71 steps, a consistency index of 0.6761, and a retention index of 0.7416. Meanwhile, a bootstrap test was conducted to verify the reliability of the results. The matrix was also analyzed for different conditions: all characters were ordered and the fossil species was added as an outgroup. The phylogenetic analyses presented herein support the following hypotheses. 1) All species of the specialized schizo-thoracines fishes form a monophyletic group. 2) Monophyly of the genus Ptychobarbus is not supported by the bootstrap test or when these characters are ordered. 3) The genus Gymnodiptychus forms a monophyletic group. 4) All species of Ptychobarbus and Gymnodiptychus form a monophyletic group with Diptychus as its sister group.
Resumo:
化石燃料的燃烧是百余年来大气中二氧化碳(CO2)浓度增加的主要原因。CO2的收集和处置则是抑制这一趋势的有效途径。本文通过对现有收集利用和处置技术的分析,认为火电厂是收集CO2的重点考虑对象;CO2用于三次采油及天然气回收在技术上和经济上比较可行;蓄水层储气前景广阔值得研究;深海处置有待进一步探索;CO2用于置换开采天然气水合物也是很有前景的方案。
The burning of fossil fuel is the primary cause to have the concentration of carbon dioxide(CO2) in atmosphere increased during the past more than a hundred of years,and the capture and disposal of CO2 is an effective method to control its rising tendency.By analysis of the current capture and disposal technologies of CO2,it is concluded that firepower plants are the key targets to capture CO2.The paper also puts forth that tertiary oil recovery and natural gas recovery with CO2 are feasible both technologically and economically;storage of CO2 in saline aquifer is a method of nice foreground and deserves to be researched; disposal of CO2 in deep seafloor will be further investigated;and displacement of gas hydrate with CO2 is a tempting programme also.
Resumo:
The estimate for the lowest cost of SODL (silicon on defect layer) solar cell is made according to the price standard of present market. The estimate shows that the PV (photovoltaics) energy costs can be reduced from today's 25-30 cents/(kW h) to 7-8 cents/(kW h) which is comparable with the present cost of electricity generated by traditional energy sources such as fossil and petroleum fuels. The PV energy costs could be reduced to a value lower than 7-8 cents(kW h) by developing SODL technology. The SODL solar cell manufacture featuring simple processes is suitable to large scale automated assembly lines with high yield of large area cells. Some new ideas are suggested, favoring the further reduction in the cost of commercial solar cells.
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20世纪升高了0.6 ℃,并预测在本世纪将上升1.4-5.8 ℃。气候变暖对陆地植物和生态系统影响深远,并已成为全球变化研究的重要议题。高海拔、高纬度地带的生态系统对气候变化最敏感。而在高原和高山极端环境影响下所形成的高寒草甸生态系统极其脆弱,对由于温室效应引起的全球气候变化极其敏感,对这些变化的响应更具有超前性。 本研究以川西北高寒草甸植物群落及几种主要物种为研究对象,采用国际山地综合研究中心(ITEX)普遍所采用的增温方法-----开顶式生长室(OTC)模拟气候变暖来研究增温对高寒草甸植物群落结构、物质分配及其主要物种生长和生理的影响,以探讨高寒草甸植物响应与适应气候变暖的生物学和生态学机制。主要研究结论如下: 1、OTC的增温效果 由于地温、地表温度和气温的平均值在OTC内分别高出对照样地0.28℃、0.46℃和1.4℃,这说明本研究所采用的开顶式生长室(OTC)起到了增温的作用;同时,由于温室内与温室外接受的降水量相同,温室内由于热量条件的改善,土壤蒸发和植被的蒸腾作用增强,直接导致了OTC内土壤表层相对湿度的减少。 2、群落结构对增温的响应 由于增温时间较短,增温内外样地的物种组成并未发生改变;但增温后一定程度上改变了植物群落的小气候环境,从而导致物种间的竞争关系被破坏,种间竞争关系的破坏引起群落优势种组成发生相应的改变,在对照样地,鹅绒委陵菜、甘青老鹳草、遏蓝菜和蚤缀是占绝对优势的物种,而在OTC内,小米草、尼泊尔酸模、垂穗披碱草、发草和羊茅的重要性显著增加。 禾草和杂草由于对增温的生物学特性及其资源利用响应的不同,加之增温造成土壤含水量下降等环境因子的改变。与对照样地相比较,OTC内禾草的盖度及生物量都显著增加,而杂草的盖度和生物量则显著下降。 3、植物生长期对增温的响应 OTC内立枯和调落物的生物量在生长季末(10月份)都要小于对照样地的立枯和调落物生物量,而OTC内的地上鲜体生物量在10月份却略高于对照样地。这说明OTC内植物的衰老或死亡得以延缓,而植物的生长期得以延长。 4、群落生物量及分配对增温的响应 OTC内的地上鲜体生物量(10月份除外)和地下0-30cm的根系生物量与对照样地相比较,都出现了不同程度的减少;土壤根系的分配格局也发生了明显的改变,其中,OTC内0-10cm土层的生物量分配比例增加,而20-30cm土层生物量分配比例的减少。 5、群落碳、氮对增温的响应 增温后,OTC内植物群落地上活体和地下活根的碳浓度不同程度的高于对照样地,植物群落的碳库在OTC内也略高于对照样地;而OTC内植物群落地上活体和地下活根的氮浓度不同程度的低于对照样地,其植物群落的氮库与对照样地相比也略有下降。 6、几种主要植物的生长及物质分配对增温的响应 垂穗披碱草在增温后株高、比叶面积和地上生物量均显著地增加;尼泊尔酸模在增温后比叶面积和单株平均生物量积累显著地增加,而各组分中,增温处理使叶的生物量显著增加,而根的生物量却显著下降;鹅绒委陵菜在增温后株高、比叶面积和单株平均生物量积累显著地减少,而各组分中,增温处理使叶和茎的生物量显著减少,根的生物量却显著地增加。 尼泊尔酸模的LMR、RMR、R/S、根部碳含量、碳和氮在叶片与根部的分配比例在增温后显著地增加,而SMR、根部氮含量、碳和氮在茎部的分配比例在增温后却显著地降低;鹅绒委陵菜的RMR、R/S、碳和氮在根部的分配比例在增温后显著地增加,而SMR、LMR、碳在叶片的分配比例在增温后却显著地降低 7、几种主要植物的光合生理过程对增温的响应 增温使垂穗披碱草和尼泊尔酸模叶片中的叶绿素a、叶绿素b、总叶绿素含量显著增加;而鹅绒委陵菜叶片的叶绿素a、叶绿素b、总叶绿素含量在增温后显著减少,类胡萝卜素含量在增温后却显著增加。 增温对3种植物的气体交换产生了显著影响。其中,垂穗披碱草和尼泊尔酸模叶片的光响应曲线在增温后明显高于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著增加,而LCP则显著降低;鹅绒委陵菜的光响应曲线在增温后则明显的低于对照处理,A、E、gs、Pmax、、Rday、AQY和LSP显著减少,而LCP则显著增加。 增温后垂穗披碱草和尼泊尔酸模叶片的Fv/Fm、Yield和qP显著增加;而鹅绒委陵菜叶片的Fv/Fm、Yield和qP则显著减少,qN却显著地增加。 8、几种主要植物的抗氧化酶系统对增温的响应 增温使垂穗披碱草和尼泊尔酸模体内抗氧化酶活性和非酶促作用有所提高,植物膜脂过氧化作用降低;鹅绒委陵菜叶片中酶促反应和非酶促反应在增温后也显著提高,但可能由于增温后的土壤干旱超过了鹅绒委陵菜叶的抗氧化保护能力,抗氧化酶活性及非酶促反应(脯氨酸、类胡萝卜素)的提高不足以完全清除干旱诱导形成的过量活性氧,因此叶片的膜脂过氧化程度仍然显著提高。 Enrichment of atmospheric greenhouse gases resulted from human activities such as fossil fuel burning and deforestation has increased global mean temperature by 0.6 ℃ in the 20th century and is predicted to increase in this century by 1.4-5.8 ℃. The global warming will have profound, long-term impacts on terrestrial plants and ecosystems. The ecoologcial consequences arising from global warming have also become the very important issuses of global change research. The terrestrial habitats of high-elevation and high-latitude ecosystems are regarded as the most sensitive to changing climate. The alpine meadow ecosystme, which resulted from the composite effects of mountain extreme climatic factors in Tibetan Plateau, is thus thought to be especially vulnerable and sensitive to global warming. In this paper, the response of plant community and several main species in the alpine meadow of Northewst Sichuan to experimemtal warming was studied by using open-top chambers (OTC). The aim of the this study was to research the warming effects on plant community structure, substance allocation, growth and physiological processes of several mian species, and to explore the biological and ecological mechanism of how the alpine meadow plants acclimate and adapt to future global warming. The results were as follows: 1. Warming effects of OTC The mean soil temperature, soil surface temperature and air temperature in OTC manipulation increased by 0.28℃、0.46℃ and 1.4℃ compared to the control during the growing season. This suggested that the OTC used in our study had increased temperature there. Meanwhile, the OTC manipulation slightly altered thermal conditions, but the same amount of precipitation was supplied to both the OTC manipulation and the control, so higher soil evaporation and plant transpiration in OTC manipulation directly lead to the decrease of soil surface water content. 2. The reponse of community structure to experimental warming The species richness was not changed by the short-term effect of OTC manipulation. However, experimental warming changed the microenvironment of plant community, therefore competitive balances among species were shift, leading to changes in species dominance. In the present study, the dominant plant species in the control plots were some forbs including Potentilla anserine, Geranium pylzowianum, Thlaspi arvense and Arenaria serpyllifolia, however, the importance value of some gramineous grasses including Elymus nutans, Deschampsia caespitosa, Festuca ovina, and some forbs including Euphrasia tatarica and Rumex acetosa significantly increased in OTC. The different biology characteristics and resource utilizations between gramineous grasses and forbs, and enhanced temperature caused change in some environment factors such as soil water content. As a result, the coverage and biomass of gramineous grasses significantly increased in OTC compared to the control, however, the coverage and biomass of forbs singnifciantly decreased in OTC compared to the control. 3. The reponse of plant growing season to experimental warming Both the standing dead and fallen litter biomass in OTC were lower than those in the control in October, and the biomass of aboveground live-vegetation in OTC was higher than that of the control. The results indicated that the senescence of plants was postponed, and the growing season was prolonged in our research. 4. The reponse of community biomass accumulation and its allocation to experimental warming Experimental warming caused the decrease of aboveground live biomass and belowground root biomass except for the aboveground live biomass in October. Experimental warming also had pronounced effects on the pattern of root biomass allocation. In the present study, the root biomass in 0-10cm soil layer increased in OTC manipulation compared to the control, however, the root biomass in the 20-30cm soil layer decreased in OTC manipulation compared to the control. 5. The reponse of community C and N content to experimental warming The C concentration and stock in aboveground live and belowground root both increased in OTC manipulation compared to the control. However, the N concentration and stock in aboveground live and belowground root both decreased in OTC manipulation compared to the control. 6. The reponse of gowth and biomass, C and N alloction of several species to experimental warming Experimental warming significantly increased the height, SLA (specific leaf area) and aboveground biomass of Elymus nutans in OTC manipulation compared to the control. The SLA and total biomass of Rumex acetosa also significantly increased in OTC manipulation compared to control, among the different components of Rumex acetosa, leaf biomass significantly increased, but root biomass significantly decreased in OTC manipulation compared to the control. However, the height, SLA and total biomass of Potentilla anserina significantly decreased in OTC manipulation compared to the control, among the different component of Potentilla anserina, leaf and stem biomass significantly decreased, but root biomass significantly increased in OTC manipulation compared to the control. The LMR (leaf mass ratio), RMR (root mass ratio), R/S (shoot/root biomass ration) and root C concentration of Rumex acetosa significantly increased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively more C and N content to leaf and root in response to experimental warming, however, the SMR (stem mass ration) and root N concentration of Rumex acetosa significantly decreased in OTC manipulation compared to outside control, also, Rumex acetosa allocated relatively less C and N content to stem in response to experimental warming. The RMR and R/S of Potentilla anserina significantly increased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively more C and N content to root in response to experimental warming, however, the SMR and LMR of Potentilla anserina significantly decreased in OTC manipulation compared to outside control, also, Potentilla anserina allocated relatively less C and N content to leaf in response to experimental warming. 7. The reponse of physiological processes of several species to experimental warming Experimental warming significantly increased chlorophyll a, chlorophyll b and total chlorophyll of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control. However, chlorophyll a, chlorophyll b, total chlorophyll and carotenoid of Potentilla anserina in OTC manipulation significantly decreased compared to outside control. Experimental warming had pronounced effects on gas exchange of Elymus nutans, Rumex acetosa and Potentilla anserine. In the present study, warming markedly increased the light response curves of Elymus nutans and Rumex acetosa in OTC manipulation compared to outside control, and also singnificantly increased A (net photosynthesis rate), E (transpiration rate), gs (stomatal conductance), Pmax (maximum net photosynthetic rate), Rday (dark respiration rate), AQY (apparent quantum yield) and LSP (light saturation point), but LCP (photosynthetic light compensation) of Elymus nutans and Rumex acetosa in OTC manipulation singnificantly decreased compared to outside control. However, warming markedly decreased the light response curves of Potentilla anserina in OTC manipulation compared to outside control, and also singnificantly decreased A, E, gs, Pmax, Rday, AQY and LSP, but LCP of Potentilla anserina in OTC manipulation singnificantly increased compared to outside control. Experimental warming singnificantly increased the chlorophyll fluorescence kinetics parameters such as Fv/Fm, Yield and qP of Elymus nutans and Rumex acetosa and qN of Potentilla anserina in OTC manipulation, but Fv/Fm, Yield and qP of Potentilla anserina in OTC manipulation singnificantly decreased. 8. The reponse of antioxidative systems of several species to experimental warming Experimental warming tended to increase the activities of antioxidative enzymes and stimulate the role of non-enzymes of Elymus nutans and Rumex acetosa. As a result, MDA content of Elymus nutans and Rumex acetosa decreased. The activities of antioxidative enzymes and non-enzymes of Potentilla anserina also significantly increased in OTC manipulation, but more O2- was produced because of lower soil water content, and the O2- accumulation exceeded the defense ability of antioxidative systems and non-enzymes fuctions. As a result, MDA content of Potentilla anserine still increased in OTC manipulation compared to outside control.
Resumo:
由于人类活动所引起的地球大气层中温室气体的富集已导致全球地表平均温度在20 世纪升高了0.6 ¡æ,并预测在本世纪将上升1.4-5.8 ¡æ。气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。位于青藏高原东部的川西亚高山针叶林是研究气候变暖对陆地生态系统影响的重要森林类型。森林采伐迹地和人工云杉林下作为目前该区人工造林和森林更新的两种重要生境,二者截然不同的光环境对亚高山针叶林不同物种更新及森林动态有非常重要的影响。 本文以青藏高原东部亚高山针叶林几种主要森林树种为研究对象,采用开顶式增温法(OTCs)模拟气候变暖来研究增温对生长在两种不同光环境下(全光条件和林下低光环境)的几种幼苗早期生长和生理的影响,旨在从更新角度探讨亚高山针叶林生态系统不同树种对气候变暖在形态或生理上的响应差异,其研究结果可在一定程度上为预测气候变暖对亚高山针叶林物种组成和演替动态提供科学依据,同时也可为未来林业生产管理者提供科学指导。 1、与框外对照相比,OTCs 框内微环境发生了一些变化。OTCs 框内与框外对照气温年平均值分别为5.72 ¡æ和5.21 ¡æ,而地表温度年平均值分别为5.34 ¡æ和5.04 ¡æ,OTCs 使气温和地表年平均温度分别提高了0.51 ¡æ和0.34 ¡æ;OTCs框内空气湿度年平均值约高于框外对照,二者分别为90.4 %和85.3 %。 2、增温促进了三种幼苗生长和生物量的积累,但增温效果与幼苗种类及所处的光环境有关。无论在全光或林下低光条件下,增温条件下云杉幼苗株高、地径、分支数、总生物量及组分生物量(根、茎、叶重)都显著地增加;增温仅在全光条件下使红桦幼苗株高、地径、总生物量及组分生物量(根、茎、叶重)等参数显著地增加,而在林下低光条件下增温对幼苗生长和生物量积累的影响效果不明显;冷杉幼苗生长对增温的响应则与红桦幼苗相反,增温仅在林下低光条件下对冷杉幼苗生长和形态的影响才有明显的促进作用。 增温对三种幼苗的生物量分配模式产生了不同的影响,并且这种影响也与幼苗所处的光环境有关。无论在全光或林下低光环境下,增温都促使云杉幼苗将更多的生物量分配到植物地下部分,从而导致幼苗在增温条件下有更高的R/S 比;增温仅在林下低光条件下促使冷杉幼苗将更多的生物量投入到植物叶部,从而使幼苗R/S 比显著地降低;增温在全光条件下对红桦幼苗生物量分配的影响趋势与冷杉幼苗在低光条件下相似,即增温在全光条件下促使红桦幼苗分配更多的生物量到植物同化部分—叶部。 3、增温对亚高山针叶林生态系统中三种幼苗气体交换和生理表现的影响总体表现为正效应(Positive),即增温促进了几种幼苗的生理活动及其表现:(i)无论在全光或林下低光环境下,增温使三种幼苗的光合色素含量都有所增加;(ii)增温在一定程度上提高了三种使幼苗的PSII 光系统效率(Fv/Fm),从而使幼苗具有更强的光合电子传递活性;增温在一定程度使三种幼苗潜在的热耗散能力(NPQ)都有所增强,从而提高幼苗防御光氧化的能力;(iii)从研究结果来看,增温通过增加光合色素含量和表观量子效率等参数而促进幼苗的光合作用过程。总体来说增温对幼苗生理过程的影响效果与幼苗种类及所处的光环境有关,增温仅在全光条件下对红桦幼苗光合过程的影响才有明显的效果,而冷杉幼苗则相反,增温仅在低光条件下才对幼苗的生理过程有显著的影响。 4、增温对三种幼苗的抗氧化酶系统产生了一定的影响。从总体来说,增温使几种幼苗活性氧含量及膜脂过氧化作用降低,从而在一定程度上减轻了该区低温对植物生长的消极影响;增温倾向表明使三种幼苗体内抗氧化酶活性和非酶促作用有所提高,从而有利于维持活性氧代谢平衡。但增温影响效果与幼苗种类所处的光环境及抗氧化酶种类有关,增温对冷杉幼苗抗氧化酶活性的影响仅在林下低光环境下效果明显,而对红桦幼苗抗氧化酶活性的影响仅在全光条件下才有明显的效果。 总之,增温促进了亚高山针叶林生态系统中三种幼苗的生长和生理表现,但幼苗生长和生理对增温的响应随植物种类及所处的光环境不同而变化,这种响应差可能异赋予了不同植物种类在未来气候变暖背景下面对不同环境条件时具有不同的适应力和竞争优势,从而对亚高山针叶林生态系统物种组成和森林动态产生潜在的影响。 Enrichment of atmospheric greenhouse gases resulted from human activities suchas fossil fuel burning and deforestation has increased global mean temperature by 0.6¡æ in the 20th century and is predicted to increase it by 1.4-5.8 ¡æ. The globalwarming will have profound, long-term impacts on terrestrial plants and ecosystems.The ecoologcial consequences arising from global warming have also become thevery important issuses of global change research. The subalpine coniferous forests inthe eastern Qinghai-Tibet Plateau provide a natural laboratory for the studying theeffects of climate warming on terrestrial ecosystems. The light environment differssignificantly between clear-outs and spruce plantations, which is particularlyimportant for plant regeneration and forest dynamics in the subalpine coniferous forests. In this paper, the short-term effects of two levels of air temperature (ambient andwarmed) and light (full light and ca. 10% of full light regimes) on the early growthand physiology of Picea asperata, Abies faxoniana and Betula albo-sinensis seedlingswas determined using open-top chambers (OTCs). The aim of the present study wasto understand the differences between tree species in their responses to experimentalwarming from the perspective of regeneration. Our results could provide insights intothe effects of climate warming on community composition and regeneration behavior for the subalpine coniferous forest ecosystem processes, and provide scientificdirection for the production and management under future climate change. 1. The OTCs manipulation slightly altered thermal conditions during the growingseason compared with the outside chambers. The annual mean air temperature andsoil surface temperature was 5.72 and 5.34 ¡æ (within the chambers), and 5.21 and5.04 ¡æ (outside the chambers), respectively. The OTCs manipulation increased airtemperature and soil surface temperature by 0.51 and 0.34 ¡æ on average, respectively.Air relative humidity was slightly higher inside the OTCs compared with the controlplots, with 90.4 and 85.3 %, respectively. 2. Warming generally stimulated the growth and biomass accumulation of thethree tree species, but the effects of warming on growth and development variedbetween light conditions and species. Irrespective of light regimes, warmingsignificantly increased plant height, root collar diameter, total biomass, componentbiomass (stem, foliar and root biomass) and the number of branches in P. asperataseedlings; For A. faxoniana seedlings, significant effects of warming on all the tested parameters (plant height, root collar diameter, total biomass, and component biomass) were found only under low light conditions; In contrast, the growth responses of B.albo-sinensis seedlings to warming were found only under full light conditions. Warming had pronounced effects on the pattern of carbon allocation. Irrespectiveof light regimes, the P. asperata seedlings allocated relatively more biomass to rootsin responses to warming, which led to a higher R/S. Significant effects of warming onbiomass allocation were only found for the A. faxoniana seedlings grown under lowlight conditions, with significantly increased in leaf mass ratio (LMR) and decreasedin R/S in responses to warming manipulation. The carbon allocation responses of B.albo-sinensis seedling to warming under full light conditions were similar with theresponse of A. faxoniana seedlings grown under low light conditions. Warmingsignificantly decreased root mass ratio (RMR), and increased leaf mass ratio (LMR)and shoot/root biomass ratio (S/R) for the B. albo-sinensis seedlings grown under full light conditions. 3. Warming generally had a beneficial effect on physiological processes of dominant tree species in subalpine coniferous forest ecosystems: (i) Warming markedincreased the concentrations of photosynthetic pigments in both tree species, but theeffects of warming on photosynthetic pigments were greater under low lightconditions than under full light conditions for the two conifers; (ii) Warming tended toenhance the efficiency of PSII in terms of increase in Fv/Fm, which was related tohigher chloroplast electron transport activity; and enhance non-radiative energydissipation in terms of in increase in NPQ, which may reflect an increased capacity inpreventing photooxidation; (iii) Warming may enhance photosynthesis and advancephysiological activity in plants by increasing photosynthetic pigment concentration,the efficiency of PSII and apparent quantum yield (Φ) etc. From the results, theeffects of warming on seedlings’ physiological performance varied between lightenvironment and species. The effects of warming on photosynthesis performance of B.albo-sinesis seedlings were pronounced only under full light conditions, while thephysiological responses of A. faxoniana seedlings to warming were found only underthe 60-year plantation. These results provided further support for the observationsabove on growth responses of seedlings to warming. 4. Warming had marked effects on antioxidative systems of the three seedlings.Warming generally decreased H2O2 accumulation and the rate of O2- production, andalleviated degree of lipid peroxidation in terms of decreased MDA content, whichalleviated to some extent the negative effects of low temperature on the plant growthand development in this region; Warming tended to increase the activities ofantioxidative enzymes and stimulate the role of non-enzymatic AOS scavenging,which helped to create an balance in maintaining AOS metabolites for the threeseedlings. Nevertheless, the effects of warming on antioxidative defense systems werepronounced only under the 60-year plantation for the A. faxoniana seedlings. Incontrast, the marked effects of warming on antioxidative defense systems for the B.albo-sinesis seedlings were found only under the full light conditions. In sum, warming is considered to be generally positive in terms of growth andphysiological process. However, the responses of growth and physiology performanceto warming manipulation varied between species and light regimes. Competitive and adaptive relationships between tree species may be altered as a result of responsedifferences to warming manipulation, which is one mechanism by which globalwarming will alter species composition and forest dynamics of subalpine coniferousforest ecosystems under future climate change.
Resumo:
木质纤维素原料种类多、分布广、数量巨大,通过燃料乙醇生产技术、厌氧沼气发酵技术将其转化成乙醇、沼气等二次能源,一定程度上可以缓解化石能源的不断消耗所带来的能源危机,也解决了农林废弃物引起的环境污染问题。其中以木质纤维素原料生产燃料乙醇,还可以避免以淀粉类和糖类原料生产燃料乙醇时带来的“与人争粮”等一系列问题。因此具有重要的经济效益、环境效益和社会效益。 然而,木质纤维素原料结构致密,木质素包裹在纤维素、半纤维素外围,导致其很难被降解利用,必须进行适当的预处理,去除木质素,打破原有的致密结构,利于原料的后续利用。因此,预处理成为木质纤维素原料能源化利用的关键。而目前预处理环节的费用过于昂贵,于是寻找一种高效、低成本的预处理方法是当今研究的热点。 本论文采用组合白腐真菌对木质纤维素原料进行生物预处理研究,与其他物理化学法相比,该法有着专一性较强、反应温和、不造成环境污染、成本低等优势。白腐真菌主要通过分泌木质素降解酶对木质素进行降解,从而破坏原料的致密结构,提高后续利用效率。所以木质素降解酶酶活的高低是影响原料预处理效果的一个关键因素。于是本论文首先通过将白腐真菌进行组合的方式提高木质素降解酶(漆酶,Lac)酶活;接着对组合菌的菌株相互作用机理进行研究,阐明组合菌Lac 酶活提高的原因,为菌株组合提高Lac 酶活这种方法的应用提供理论依据,同时也为后续组合白腐真菌预处理木质纤维素原料提供指导;进一步采用固态发酵和木质素降解酶两种方式对木质纤维素原料进行预处理研究,最大化去除木质素成分,破坏原料的致密结构;最终对预处理后原料的酶解糖化进行初步研究,为原料后续的能源化应用奠定基础。具体研究结果如下: (1) 以实验室保存的三株主要分泌Lac 的白腐真菌为出发菌株,筛选得到一组Lac 酶活明显提高的组合菌55+m-6,其中菌株55 为Trametes trogii sp.,m-6 为Trametes versicolor sp.,组合后Lac 酶活较单菌株分别提高24.13倍和4.07 倍。组合菌的最适产酶条件为pH 6.5、C/N 16:1、Tween 80 添加量为0.01%,在该条件下组合菌的Lac 酶活峰值比未优化时提高4.11倍。 (2) 对组合菌55+m-6 菌株间相互作用机理进行研究,发现菌株之间不存在抑制作用;平板培养时,菌丝交界处Lac 酶活最高并分泌棕色色素;液体培养时,菌株m-6 对组合后Lac 酶活的提高起着更为重要的作用:菌株m-6的菌块、过滤灭菌胞外物以及高温灭菌胞外物均能明显刺激菌株55 的Lac产生;菌株55、m-6 进行组合后,同工酶种类未发生增减,但有三种Lac同工酶浓度有所提高;对菌株胞外物进行薄层层析和质谱分析,结果表明组合前后菌株胞外物中各物质在浓度上存在较大的变化。推测组合菌Lac酶活的明显提高,主要是由于菌株m-6 胞外物中的一些物质能刺激菌株55 分泌大量Lac 进行代谢,且这些刺激物质并非菌株m-6 特有,菌株55自身也可以代谢生成,但是适当的浓度才能刺激Lac 的大量分泌。 (3) 将组合菌55+m-6 用于固态发酵预处理木质纤维素原料,发现其对玉米秆的降解程度最大,在粉碎度40 目、含水率65%的最优处理条件下,处理至第15d,秸秆失重率为41.24%,其中木质素、纤维素、半纤维素均有降解,且Lac 和纤维素酶(CMC)酶活以及还原糖量均达到峰值。 (4) 对玉米秆进行木质素降解酶预处理,发现Lac/1-羟基苯并三唑(HBT)系统对玉米秆木质素的降解效果最好,在最优处理条件时,即HBT 用量0.2%、处理时间1d、Lac 用量50U/g,木质素降解率可达12.60%。预处理后玉米秆的致密结构被破坏,比表面积增大,利于后续酶与纤维素、半纤维素成分的结合。 (5) 对预处理后的玉米秆进行酶解糖化,其中组合菌固态发酵预处理后玉米秆的糖化率比对照高4.33 倍;Lac/HBT 系统预处理后玉米秆的糖化率比对照高2.99%,糖化液中主要含有木糖、葡萄糖两种单糖。 There are many kinds and large quantities of lignocellulosic biomass widely distributed on the earth. They can be converted into secondary energy such as fuel ethanol, biogas, et al., which can relieve the energy crisis caused by consumption of fossil energy resources and solve the problem of environmental pollution caused by agriculture and forestry waste. Meanwhile, the production of fuel ethanol from lignocellulosic biomass can ensure food supply to human kind instead of starch- and sugar-containing raw materials. So the energy conversion of lignocellulosic biomass contributes considerable economic, environment and social benefits. However, lignocellulosic biomass has the compact structure, in which lignin surrounds cellulose and hemicellulose, so it must be pretreated before energy usage and pretreatment is one of the most critical steps in the energy conversion of lignocellulosic biomass. At present, the cost of pretreatment is too expensive, so looking for an efficient and low-cost pre-treatment method is one of recent research hot spots. In this research, combined white rot fungi pretreatment method was used, which had some advantages in low cost, high specificity, mild reacting conditions and friendly environmental effects compared with the other physical and chemical methods. White rot fungi secrete lignin degrading enzymes to degrade the content of lignin and damage the contact structure of lignocellulosic biomass, so the activity of the lignin degrading enzymes is the key factor to the degradation effect of raw materials. Firstly, the combined fungi with high laccase activity were screened; secondly, the interaction mechanism between strains was studied, and the cause of higher laccase activity after strains combination was also preliminary clarified; under the guidance of the mechanism, lignocellulosic biomass was pretreated by the combined fungi; lastly, the enzymatic hydrolysis of pretreated lignocellulosic biomass was also preliminary studied; all of the researches could lay the foundation for the energy application of lignocellulosic biomass. The specific research results were as follows: (1) The combined fungi 55+m-6 with significant higher laccase activity were screened from the three white rot fungi stored in our lab which mainly secreted laccase. Strain 55 and strain m-6 were Trametes trogii sp. and Trametes versicolor sp., respectively. The laccase activity of combined fungi was 24.13 and 4.07-fold than strain 55 and strain m-6, respectively. The optimized condition for laccase production of the combined fungi in liquid medium was pH 6.5, C/N 16:1 and Tween 80 0.01%. In this optimized condition, the laccase activity of combined fungi was 4.11-fold higher comparing with which in non-optimized medium. (2) The interaction mechanism between strain 55 and strain m-6 was further studied, and no inhibition effect was observed. Brown pigment was secreted on the junction of the two strains on the plate, where the highest laccase activity was detected. Strain m-6 was much important to boost laccase activity of combined fungi in liquid medium, and strain 55 was stimulated by fungal plug, filter sterilized extracellular substances and high temperature sterilized extracellular substances of strain m-6 to produce laccase. The types of laccase isozymes did not change after combining strain 55 and strain m-6, but the concentrations of three types increased. Mass Spectrometry and TLC analysis of extracellular substances of each strain showed that concentration of some substances considerably changed after strains were combined. It was supposed that the cause of higher laccase activity of combined fungi was mainly due to some extracellular substances of strain m-6 with the appropriate concentration which stimulated laccase secretion of strain 55 and generated not only by strain m-6 but also by strain 55. (3) Combined fungi 55+m-6 were used to lignocellulosic biomass pretreatment with the type of solid-state fermentation. The highest degree of degradation of corn straw was obtained, including the rate of weight loss was 41.24% and the lignin, cellulose and hemicellulose were degraded partially under the optimized condition of 40 mesh, 65% water content on 15th day. Laccase, CMCase activities and content of reducing sugar reached the maximum value on that day. (4) Lignin degrading enzymes from combined fungi 55+m-6 were used for corn straw pretreatment. The most remarkable degradation of lignin in corn straw with Lac/1-hydroxybenzotriazole (HBT) system was observed, and the 12.60% lignin degradation was obtained under the optimized condition of 0.2% HBT, 50 U/g laccase for 1 d. After pretreated by Lac/HBT, the tight structure of corn straw was demolished and specific surface area increased, which had advantages for accessible of enzyme to cellulose and hemicellulose. (5) The corn straws pretreated by combined fungi 55+m-6 with the type of solid-state fermentation and Lac/HBT were used for enzymatic hydrolysis, and the saccharification rates of each pretreatment type were 4.33 times and 2.99% higher than CK, respectively. The enzymatic hydrolysis liquid of corn straw pretreated by Lac/HBT mainly contained xylose and glucose.
Resumo:
Direct conversion of methane into hydrogen and valuable chemicals under nonoxidative conditions is a process severely limited thermodynamically. However, the movement from the present era of fossil fuels into the coming hydrogen energy age makes it an interesting and important approach compared with the direct conversion of methane under the aid of oxidants. This paper gives a brief overview of the direct conversion of CH4 under nonoxidative conditions. At the same time, our understanding of methane dehydroaromatization over Mo/HZSM-5 catalysts for the simultaneous formation of hydrogen and light aromatics is discussed in general, while the bifunctionality of Mo/HZSM-5 catalysts and the role of carbonaceous deposits formed during the reaction are reviewed in more detail. A perspective of the topic from both academic points of view and potential industrial applications is also presented. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
The current concern about an anthropogenic impact on global climate has made it of interest to compare the potential effect of various human activities. A case in point is the comparison between the emission of greenhouse gases from the use of natural gas and that from other fossil fuels. This comparison requires an evaluation of the effect of methane emissions relative to that of carbon dioxide emissions. A rough analysis based on the use of currently accepted values shows that natural gas is preferable to other fossil fuels in consideration of the greenhouse effect as long as its leakage can be limited to 3 to 6 percent.
Resumo:
Shell formation is one of the important events during larval development and metamorphosis in bivalves. However, the molecular mechanisms and environmental cues regulating shell initiation and growth are unclear. Here, we report that ferritin, a principal protein for biological iron storage and metabolism, might play a role in larval shell development of the bivalve mollusk Meretrix meretrix. A full-length ferritin subunit cDNA, named as MmeFer, was cloned and characterized. The MmeFer mRNA expression in different developmental stages, from trochophore to post larvae, was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR). MmeFer mRNA expression in larvae of later developmental stages increased at least 8-fold following trochophores. Moreover, the temporal and spatial expressions of MmeFer mRNA were examined by whole mount in situ hybridization. In the trochophore stage, MmeFer was detectable where it was supposed to be for shell initiation. In the later developmental stages, MmeFer was found near digestive glands and mantle that secret larval shell. MmeFer expression was also detected in larvae cultured in artificial seawater with different iron concentrations ranging from 0 to 100 mu M. These results suggest that ferritin may play a role in the shell formation of mollusks. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Large-insert bacterial artificial chromosome (BAC) libraries are necessary for advanced genetics and genomics research. To facilitate gene cloning and characterization, genome analysis, and physical mapping of scallop, two BAC libraries were constructed from nuclear DNA of Zhikong scallop, Chlamys farreri Jones et Preston. The libraries were constructed in the BamHI and MboI sites of the vector pECBAC1, respectively. The BamHI library consists of 73,728 clones, and approximately 99% of the clones contain scallop nuclear DNA inserts with an average size of 110 kb, covering 8.0x haploid genome equivalents. Similarly, the MboI library consists of 7680 clones, with an average insert of 145 kb and no insert-empty clones, thus providing a genome coverage of 1.1x. The combined libraries collectively contain a total of 81,408 BAC clones arrayed in 212 384-well microtiter plates, representing 9.1x haploid genome equivalents and having a probability of greater than 99% of discovering at least one positive clone with a single-copy sequence. High-density clone filters prepared from a subset of the two libraries were screened with nine pairs of Overgos designed from the cDNA or DNA sequences of six genes involved in the innate immune system of mollusks. Positive clones were identified for every gene, with an average of 5.3 BAC clones per gene probe. These results suggest that the two scallop BAC libraries provide useful tools for gene cloning, genome physical mapping, and large-scale sequencing in the species.
Resumo:
Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) is a kind of pattern recognition receptor, which can recognize and bind LPS and beta-1, 3-glucan, and plays curial roles in the innate immune defense against Gram-negative bacteria and fungi. In this study, the functions of LGBP from Zhikong scallop Chlamys farreri performed in innate immunity were analyzed. Firstly, the mRNA expression of CfLGBP in hemocytes toward three typical PAMPS stimulation was examined by realtime PCR. It was up-regulated extremely (P < 0.01) post stimulation of LPS and beta-glucan, and also exhibited a moderate up-regulation (P < 0.01) after PGN injection. Further PAMPs binding assay with the polyclonal antibody specific for CfLGBP proved that the recombinant CfLGBP (designated as rCfLGBP) could bind not only LPS and beta-glucan, but also PGN in vitro. More importantly, rCfLGBP exhibited obvious agglutination activity towards Gram-negative bacteria Escherichia coil, Gram-positive bacteria Bacillus subtilis and fungi Pichia pastoris. Taking the results of immunofluorescence assay into account, which displayed CfLGBP was expressed specifically in the immune cells (hemocytes) and vulnerable organ (gill and mantle), we believed that LGBP in C farreri, serving as a multi-functional PRR, not only involved in the immune response against Gram-negative and fungi as LGBP in other invertebrates, but also played significant role in the event of anti-Gram-positive bacteria infection. As the first functional research of LGBP in mollusks, our study provided new implication into the innate immune defense mechanisms of C. farreri and mollusks. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Galloanserae is an ancient and diverse avian group, for which comprehensive molecular evidence relevant to phylogenetic analysis in the context of molecular chronology is lacking. In this study, we present two additional mitochondrial genome sequences of Galloanserae (the whistling duck, Dendrocygna javanica, and the black swan, Cygnus atratus) to broaden the scope of molecular phylogenetic reconstruction. The lengths of the whistling duck's and black swan's mitochondrial genomes are 16,753 and 16,748 bases, respectively. Phylogenetic analyses suggest that Dendrocygna is more likely to be in a basal position of the branch consisting of Anatinae and Anserinae, an affiliation that does not conform to its traditional classification. Bayesian approaches were employed to provide a rough timescale for Galloanserae evolution. In general, a narrow range of 95% confidence intervals gave younger estimates than those based on limited genes and estimated that at least two lineages originated before the Coniacian epoch around 90 MYA, well before the Cretaceous-Tertiary boundary. In addition, these results, which were compatible with estimates from fossil evidence, also imply that the origin of numerous genera in Anseriformes took place in the late Oligocene to early Miocene. Taken together, the results presented here provide a working framework for future research on Galloanserae evolution, and they underline the utility of whole mitochondrial genome sequences for the resolution of deep divergence.