958 resultados para Molecular biology|Microbiology|Oceanography


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensively updated, revised and illustrated this unique introductory text presents a molecular account of the structure, function and development of the brain and nervous systems. This book describes the latest research in neurobiology made possible by modern molecular biology techniques. The author synthesizes this new knowledge and demonstrates how an understanding at the molecular level can contribute towards a theory of the brain in health and disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular dynamics (MD) simulations play a very important role in science today. They have been used successfully in binding free-energy calculations and rational design of drugs and vaccines. MD simulations can help visualize and understand structures and dynamics at an atomistic level when combined with molecular graphics programs. The molecular and atomistic properties can be displayed on a computer in a time-dependent way, which opens a road toward a better understanding of the relationship of structure, dynamics, and function. In this chapter, the basics of MD are explained, together with a step-by-step description of setup and running an MD simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Black band disease of corals consists of a microbial community dominated by the cyanobacteriurn Phormidium corallyticum. The disease primarily affects reef-framework coral species, Active black band disease continually opens up new substrate in reef environments by destroying coral tissue as the disease line advances across the surface of infected colonies. A field study was carried out to determine the abundance and distribution of black band disease on the reef building corals in the Florida Keys. During July of 1992 and 1993, up to 0.72% of coral colonies were infected with black band disease. Analysis of the distribution showed that the disease was clumped. Seasonal patters varied, with some coral colonies infected year round, others exhibiting reinfection from summer 1992 to summer 1993, and some colonies infected for one year only. Statistical analysis of black band disease incidence in relation to various environmental parameters revealed that black band disease was associated with relatively shallow water depths, higher temperatures, elevated nitrite levels, and decreased ortho-phosphate levels. Additional field studies determined recovery of scleractinian coral colonies damaged or killed through the activities of black band disease over a five-year period. These studies determined if the newly exposed substrate was recolonized through scleractinian recruitment, if there was overgrowth of the damaged areas by the formerly diseased colony, or if coral tissue destruction continued after the cessation of black band disease activity. Tissue loss continued on all coral colonies with only one colony exhibiting new tissue growth. The majority of recolonization was by non-reef-framework corals and octocorallians, limited recruitment by framework species was observed. Physiological studies of P. corallyticum were carried out to investigate the photosynthetic capacity of this cyanobacterium, and to determine if this species has the ability to fix dinitrogen. The results of this research demonstrated that P. corallyticum reaches maximum photosynthetic rates at very low light intensities (27.9 μE/m/sec), and that P. corallyticum is able to carry out oxygenic photosynthesis in the presence of sulfide, an ability that is uncommon in prokaryotic organisms. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The improvement of tropical tree crops using conventional breeding methods faces challenges due to the length of time involved. Thus, like most crops, there is an effort to utilize molecular genetic markers in breeding programs to select for desirable agronomic traits. Known as marker assisted breeding or marker assisted selection, genetic markers associated with a phenotype of interest are used to screen and select material reducing the time necessary to evaluate candidates. As the focus of this research was improving disease resistance in tropical trees, the usefulness of the WRKY gene superfamily was investigated as candidates for generating useful molecular genetic markers. WRKY genes encode plant-specific transcriptional factors associated with regulating plants' responses to both biotic and abiotic stress. ^ One pair of degenerate primers amplified 48 WRKY gene fragments from three taxonomically distinct, economically important, tropical tree crop species: 18 from Theobroma cacao L., 21 from Cocos nucifera L. and 9 from Persea americana Mill. Several loci from each species were polymorphic because of single nucleotide substitutions present within a putative non-coding region of the loci. Capillary array electrophoresis-single strand conformational polymorphism (CAE-SSCP) mapped four WRKY loci onto a genetic linkage map of a T. cacao F2 population segregating for resistance to witches' broom disease. Additionally, PCR primers specific for four T. cacao loci successfully amplified WRKY loci from 15 members of the Byttneriae tribe. A method was devised to allow the reliable discrimination of alleles by CAE-SSCP using only the mobility assigned to the sample peaks. Once this method was validated, the diversity of three WRKY loci was evaluated in a germplasm collection of T. cacao . One locus displayed high diversity in the collection, with at least 18 alleles detected from mobility differences of the product peaks. The number of WRKY loci available within the genome, ease of isolation by degenerate PCR, codominant segregation demonstrated in the F2 population, and usefulness for screening germplasm collections and closely related wild species demonstrates that the WRKY superfamily of genes are excellent candidates for developing a number of genetic molecular markers for breeding purposes in tropical trees. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plant's reproductive biology exerts a significant influence on both population persistence within changing environments and successful establishment of new populations. However, the interaction between extrinsic (i.e. ecological) and intrinsic (i.e. genetic) factors also is an important driver of demographic performance for plant populations. It is light of this that I performed a multidisciplinary investigation of the breeding system, seed and seedling establishment dynamics, and population genetic structure of the endangered Caribbean vine Ipomoea microdactyla Griseb. (Convolvulaceae). The results from the breeding system study show individuals from Florida, USA and Andros Island, Bahamas to be self-incompatible. Plants from the two regions are cross-compatible but there is evidence for outbreeding depression in their progeny. Significant regional differences were found in floral traits and progeny traits that suggests incipient speciation for the Florida populations. The results from the seed and seedling establishment dynamics experiment demonstrate that the restoration of small populations in Florida via seed and seedling augmentation is a successful strategy. The demographic performance of the outplanted individuals was driven significantly by ecological factors (e.g. herbivory) rather than by genetic factors which emphasizes that the ecological context is very important for successful restoration attempts. The results from the population genetic study using an analysis of molecular variation (AMOVA) reveal significant differences in genetic variation among individuals from Florida, Andros, and Cuba. A Bayesian analysis of population genetic structuring coincided with the previous AMOVA results among the three regions. The Mantel test indicated significant 'isolation by distance' for these regional populations implying restricted gene flow over relatively short distances. Overall, the Florida populations had the lowest measures of genetic diversity which is most likely due to the effects of both colonization founder events and habitat fragmentation. The results of my study highlight the value of performing multidisciplinary studies in relation to species conservation as knowledge of both extrinsic and intrinsic factors can best guide decisions for species preservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The serine/threonine kinase LKB1 is a regulator of critical events including development and stress responses in metazoans. The current study was undertaken to determine the function of LKB1 in Dictyostelium . During multicellular development and in response to stress insult, an apparent increase in the DdLKB1 kinase activity was observed. Depletion of DdLKB1 with a knockdown construct led to aberrant development; a severe reduction in prespore cell differentiation and a precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3, a well known cell-fate switch. Furthermore, DdLKB1 depleted cells displayed lower GSK3 activity than wild type cells in response to cAMP stimulation during development and failed to activate AMPK, a well known LKB1 target in mammals, in response to cAMP and stress insults. These results suggest that DdLKB1 positively regulates both GSK3 and AMPK during Dictyostelium development, and DdLKB1 is necessary for AMPK activation during stress response regulation. No apparent GSK3 activation was observed in response to stress insults. Spatial and temporal regulation of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) along the membrane of polarized cells is important for efficient chemotaxis. A REMI screen for PIP3 suppressors in the absence of stimulation led to the identification of SodC as PIP3 regulator. Consistent with their higher PIP3 levels, sodC− cells showed defects in chemotaxis and exhibited higher intra-cellular superoxide levels. Protein localization studies along with observations from GPI specific PI-PLC treatment of wild-type cells suggested that SodC is a GPI anchored outer-membrane protein. SodC showed superoxide dismutase activity in vitro, and motility defects of sodC− cells can be rescued by expressing the intact SodC but not by the mutant SodC, which has point mutations that affect its dismutase function. Treatment of sodC− cells with LY294002, a pharmacological inhibitor of PI3K, partially rescued the polarization and chemoattractant sensing defects but not motility defects. Consistent with increased intracellular superoxide levels, sodC − cells also exhibited higher basal Ras activity, an upstream regulator of PI3K, which can be suppressed by a cell permeable superoxide scavenger, XTT, indicating that SodC is important in regulation of intracellular superoxide levels thereby regulating the Ras activity and PIP3 levels at the membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many vertebrate and invertebrate species mediators of innate immunity include antimicrobial peptides (AMPs) such as peptide fragments of histones and other proteins with previously ascribed different functions. Shark AMPs have not been described and this research examines the antibacterial activity of nurse shark (Ginglymostoma cirratum) peripheral blood leukocyte lysates. Screening of lysates prepared by homogenizing unstimulated peripheral blood leukocytes identified muramidase (lysozyme-like) and non-muramidase antibacterial activity. Lysates were tested for lysozyme using the lysoplate assays, and antibacterial (AB) activity was assayed for by a microdilution growth assay that was developed using Planococcus citreus as the target bacterium. Fractionation of crude lysates by ion exchange and affinity chromatography was followed by a combination of SDS-PAGE with LC/MS-MS and/or N-terminal sequence analysis of low molecular weight protein bands (<20 kDa). This yielded several peptides with amino acid sequence similarity to lysozyme, ubiquitin, hemoglobin, human histones H2A, H2B and H4 and to antibacterial histone fragments of the catfish and the Asian toad. Not all peptide sequences corresponded to peptides potentially antibacterial. The correlation of a specific protein band in active lysate fractions was accomplished by employing the acid-urea gel overlay assays in which AB activity was seen as zones of growth inhibition on a lawn of P. citreus at a position corresponding to that of the putative AB protein band. This study is the first to describe putative AMPs in the shark and their potential role in innate immunity.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Arsenic is one of the most ubiquitous toxins and endangers the health of tens of millions of humans worldwide. It is a mainly a water-borne contaminant. Inorganic trivalent arsenic (AsIII) is one of the major species that exists environmentally. The transport of AsIII has been studied in microbes, plants and mammals. Members of the aquaglyceroporin family have been shown to actively conduct AsIII and its organic metabolite, monomethylarsenite (MAsIII). However, the transport of AsIII and MAsIII in in any fish species has not been characterized. Results In this study, five members of the aquaglyceroporin family from zebrafish (Danio rerio) were cloned, and their ability to transport water, glycerol, and trivalent arsenicals (AsIII and MAsIII) and antimonite (SbIII) was investigated. Genes for at least seven aquaglyceroporins have been annotated in the zebrafish genome project. Here, five genes which are close homologues to human AQP3, AQP9 and AQP10 were cloned from a zebrafish cDNA preparation. These genes were namedaqp3, aqp3l, aqp9a, aqp9b and aqp10 according to their similarities to the corresponding human AQPs. Expression of aqp9a, aqp9b, aqp3, aqp3l and aqp10 in multiple zebrafish organs were examined by RT-PCR. Our results demonstrated that these aquaglyceroporins exhibited different tissue expression. They are all detected in more than one tissue. The ability of these five aquaglyceroporins to transport water, glycerol and the metalloids arsenic and antimony was examined following expression in oocytes from Xenopus leavis. Each of these channels showed substantial glycerol transport at equivalent rates. These aquaglyceroporins also facilitate uptake of inorganic AsIII, MAsIII and SbIII. Arsenic accumulation in fish larvae and in different tissues from adult zebrafish was studied following short-term arsenic exposure. The results showed that liver is the major organ of arsenic accumulation; other tissues such as gill, eye, heart, intestine muscle and skin also exhibited significant ability to accumulate arsenic. The zebrafish larvae also accumulate considerable amounts of arsenic. Conclusion This is the first molecular identification of fish arsenite transport systems and we propose that the extensive expression of the fish aquaglyceroporins and their ability to transport metalloids suggests that aquaglyceroporins are the major pathways for arsenic accumulation in a variety of zebrafish tissues. Uptake is one important step of arsenic metabolism. Our results will contribute to a new understanding of aquatic arsenic metabolism and will support the use of zebrafish as a new model system to study arsenic associated human diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Predicting the impacts of environmental change on marine organisms, food webs, and biogeochemical cycles presently relies almost exclusively on short-term physiological studies, while the possibility of adaptive evolution is often ignored. Here, we assess adaptive evolution in the coccolithophore Emiliania huxleyi, a well-established model species in biological oceanography, in response to ocean acidification. We previously demonstrated that this globally important marine phytoplankton species adapts within 500 generations to elevated CO2. After 750 and 1000 generations, no further fitness increase occurred, and we observed phenotypic convergence between replicate populations. We then exposed adapted populations to two novel environments to investigate whether or not the underlying basis for high CO2-adaptation involves functional genetic divergence, assuming that different novel mutations become apparent via divergent pleiotropic effects. The novel environment "high light" did not reveal such genetic divergence whereas growth in a low-salinity environment revealed strong pleiotropic effects in high CO2 adapted populations, indicating divergent genetic bases for adaptation to high CO2. This suggests that pleiotropy plays an important role in adaptation of natural E. huxleyi populations to ocean acidification. Our study highlights the potential mutual benefits for oceanography and evolutionary biology of using ecologically important marine phytoplankton for microbial evolution experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acknowledgements The authors would like to thank M. N. Cueto and J. M. Antonio (ECOBIOMAR) for molecular analysis and technical support. K. MacKenzie (University of Aberdeen) and A. Roura (ECOBIOMAR) assisted with the taxonomic identification of parasites. We are also grateful to P. Caballero (Service Nature Conservation of the Xunta de Galicia) for fish sampling support.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polarization is important for the function and morphology of many different cell types. The keys regulators of polarity in eukaryotes are the Rho-family GTPases. In the budding yeast Saccharomyces cerevisiae, which must polarize in order to bud and to mate, the master regulator is the highly conserved Rho GTPase, Cdc42. During polarity establishment, active Cdc42 accumulates at a site on the plasma membrane characterizing the “front” of the cell where the bud will emerge. The orientation of polarization is guided by upstream cues that dictate the site of Cdc42 clustering. However, in the absence of upstream cues, yeast can still polarize in a random direction during symmetry breaking. Symmetry breaking suggests cells possess an autocatalytic polarization mechanism that can amplify stochastic fluctuations of polarity proteins through a positive feedback mechanism.

Two different positive feedback mechanisms have been proposed to polarize Cdc42 in budding yeast. One model posits that Cdc42 activation must be localized to a site at the plasma membrane. Another model posits that Cdc42 delivery must be localized to a particular site at the plasma membrane. Although both mechanisms could work in parallel to polarize Cdc42, it is unclear which mechanism is critical to polarity establishment. We directly tested the predictions of the two positive feedback models using genetics and live microscopy. We found that localized Cdc42 activation is necessary for polarity establishment.

While this explains how active Cdc42 localizes to a particular site at the plasma membrane, it does not address how Cdc42 concentrates at that site. Several different mechanisms have been proposed to concentrate Cdc42. The GDI can extract Cdc42 from membranes and selective mobilize GDP-Cdc42 in the cytoplasm. It was proposed that selectively mobilizing GDP-Cdc42 in combination with local activation could locally concentrate total Cdc42 at the polarity site. Although the GDI is important for rapid Cdc42 accumulation at the polarity site, it is not essential to Cdc42 concentration. It was proposed that delivery of Cdc42 by actin-mediated vesicle can act as a backup pathway to concentrate Cdc42. However, we found no evidence for an actin-dependent concentrating pathway. Live microscopy experiments reveal that prenylated proteins are not restricted to membranes, and can enter the cytoplasm. We found that the GDI-independent concentrating pathway still requires Cdc42 to exchange between the plasma membrane and the cytoplasm, which is supported by computational modeling. In the absence of the GDI, we found that Cdc42 GAP became essential for polarization. We propose that the GAP limits GTP-Cdc42 leak into the cytoplasm, which would be prohibitive to Cdc42 polarization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryptococcus neoformans is an opportunistic fungal pathogen that causes significant disease worldwide. Even though this fungus has not evolved specifically to cause human disease, it has a remarkable ability to adapt to many different environments within its infected host. C. neoformans adapts by utilizing conserved eukaryotic and fungal-specific signaling pathways to sense and respond to stresses within the host. Upon infection, two of the most significant environmental changes this organism experiences are elevated temperature and high pH.

Conserved Rho and Ras family GTPases are central regulators of thermotolerance in C. neoformans. Many GTPases require prenylation to associate with cellular membranes and function properly. Using molecular genetic techniques, microscopy, and infection models, I demonstrated that the prenyltransferase, geranylgeranyl transferase I (GGTase I) is required for thermotolerance and pathogenesis. Using fluorescence microscopy, I found that only a subset of conserved GGTase I substrates requires this enzyme for membrane localization. Therefore, the C. neoformans GGTase I may recognize its substrate in a slightly different manner than other eukaryotic organisms.

The alkaline response transcription factor, Rim101, is a central regulator of stress-response genes important for adapting to the host environment. In particular, Rim101 regulates cell surface alterations involved in immune avoidance. In other fungi, Rim101 is activated by alkaline pH through a conserved signaling pathway, but this pathway had yet been characterized in C. neoformans. Using molecular genetic techniques, I identified and analyzed the conserved members of the Rim pathway. I found that it was only partially conserved in C. neoformans, missing the components that sense pH and initiate pathway activation. Using a genetic screen, I identified a novel Rim pathway component named Rra1. Structural prediction and genetic epistasis experiments suggest that Rra1 may serve as the Rim pathway pH sensor in C. neoformans and other related basidiomycete fungi.

To explore the relevance of Rim pathway signaling in the interaction of C neoformans with its host, I characterized the Rim101-regulated cell wall changes that prevent immune detection. Using HPLC, enzymatic degradation, and cell wall stains, I found that the rim101Δ mutation resulted in increased cell wall chitin exposure. In vitro co-culture assays demonstrated that increased chitin exposure is associated with enhanced activation of macrophages and dendritic cells. To further test this association, I demonstrated that other mutant strains with increased chitin exposure induce macrophage and dendritic cell responses similar to rim101Δ. We used primary macrophages from mutant mouse lines to demonstrate that members of both the Toll-like receptor and C-type lectin receptor families are involved in detecting strains with increased chitin exposure. Finally, in vivo immunological experiments demonstrated that the rim101Δ strain induced a global inflammatory immune response in infected mouse lungs, expanding upon our previous in vivo rim101Δ studies. These results demonstrate that cell wall organization largely determines how fungal cells are detected by the immune system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of vascular homeostasis is an active process that is dependent on continuous signaling by the quiescent endothelial cells (ECs) that line mature vessels. Defects in vascular homeostasis contribute to numerous disorders of significant clinical impact including hypertension and atherosclerosis. The signaling pathways that are active in quiescent ECs are distinct from those that regulate angiogenesis but are comparatively poorly understood. Here we demonstrate that the previously uncharacterized scaffolding protein Caskin2 is a novel regulator of EC quiescence and that loss of Caskin2 in mice results in elevated blood pressure at baseline. Caskin2 is highly expressed in ECs from various vascular beds both in vitro and in vivo. When adenovirally expressed in vitro, Caskin2 inhibits EC proliferation and migration but promotes survival during hypoxia and nutrient deprivation. Likewise, loss of Caskin2 in vivo promotes increased vascular branching and permeability in mouse and zebrafish models. Caskin2 knockout mice are born in normal Mendelian ratios and appear grossly normal during early adulthood. However, they have consistently elevated systolic and diastolic blood pressure at baseline and significant context-dependent abnormalities in systemic metabolism (e.g., body weight, fat deposition, and glucose homeostasis). Although the precise molecular mechanisms of these effects remain unclear, we have shown that Caskin2 interacts with several proteins known to have important roles in endothelial biology and cardiovascular disease including the serine/threonine phosphatase PP1, the endothelial receptor Tie1, and eNOS, which is a critical regulator of vascular homeostasis. Ongoing work seeks to further characterize the functions of Caskin2 and its mechanisms of action with a focus on how Caskin2-mediated regulation of endothelial phenotype relates to its systemic effects on cardiovascular and metabolic function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lungs are vital organs whose airways are lined with a continuous layer of epithelial cells. Epithelial cells in the distal most part of the lung, the alveolar space, are specialized to facilitate gas exchange. Proximal to the alveoli is the airway epithelium, which provides an essential barrier and is the first line of defense against inhaled toxicants, pollutants, and pathogens. Although the postnatal lung is a quiescent organ, it has an inherent ability to regenerate in response to injury. Proper balance between maintaining quiescence and undergoing repair is crucial, with imbalances in these processes leading to fibrosis or tumor development. Stem and progenitor cells are central to maintaining balance, given that they proliferate and renew both themselves and the various differentiated cells of the lung. However, the precise mechanisms regulating quiescence and repair in the lungs are largely unknown. In this dissertation, ionizing radiation is used as a physiologically relevant injury model to better understand the repair process of the airway epithelium. We use in vitro and in vivo mouse models to study the response of a secretory progenitor, the club cell, to various doses and qualities of ionizing radiation. Exposure to radiation found in space environments and in some types of radiotherapy caused clonal expansion of club cells specifically in the most distal branches of the airway epithelium, indicating that the progenitors residing in the terminal bronchioles are radiosensitive. This clonal expansion is due to an increase in p53-dependent apoptosis, senescence, and mitotic defects. Through the course of this work, we discovered that p53 is not only involved in radiation response, but is also a novel regulator of airway epithelial homeostasis. p53 acts in a gene dose-dependent manner to regulate the composition of airway epithelium by maintaining quiescence and regulating differentiation of club progenitor cells in the steady-state lung. The work presented in this dissertation represents an advance in our understanding of the molecular mechanisms underlying maintenance of airway epithelial progenitor cells as well as their repair following ionizing radiation exposure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+ T cells play a crucial in the adaptive immune system. They function as the central hub to orchestrate the rest of immunity: CD4+ T cells are essential governing machinery in antibacterial and antiviral responses by facilitating B cell affinity maturation and coordinating the innate and adaptive immune systems to boost the overall immune outcome; on the contrary, hyperactivation of the inflammatory lineages of CD4+ T cells, as well as the impairments of suppressive CD4+ regulatory T cells, are the etiology of various autoimmunity and inflammatory diseases. The broad role of CD4+ T cells in both physiological and pathological contexts prompted me to explore the modulation of CD4+ T cells on the molecular level.

microRNAs (miRNAs) are small RNA molecules capable of regulating gene expression post-transcriptionally. miRNAs have been shown to exert substantial regulatory effects on CD4+ T cell activation, differentiation and helper function. Specifically, my lab has previously established the function of the miR-17-92 cluster in Th1 differentiation and anti-tumor responses. Here, I further analyzed the role of this miRNA cluster in Th17 differentiation, specifically, in the context of autoimmune diseases. Using both gain- and loss-of-function approaches, I demonstrated that miRNAs in miR-17-92, specifically, miR-17 and miR-19b in this cluster, is a crucial promoter of Th17 differentiation. Consequently, loss of miR-17-92 expression in T cells mitigated the progression of experimental autoimmune encephalomyelitis and T cell-induced colitis. In combination with my previous data, the molecular dissection of this cluster establishes that miR-19b and miR-17 play a comprehensive role in promoting multiple aspects of inflammatory T cell responses, which underscore them as potential targets for oligonucleotide-based therapy in treating autoimmune diseases.

To systematically study miRNA regulation in effector CD4+ T cells, I devised a large-scale miRNAome profiling to track in vivo miRNA changes in antigen-specific CD4+ T cells activated by Listeria challenge. From this screening, I identified that miR-23a expression tightly correlates with CD4+ effector expansion. Ectopic expression and genetic deletion strategies validated that miR-23a was required for antigen-stimulated effector CD4+ T cell survival in vitro and in vivo. I further determined that miR-23a targets Ppif, a gatekeeper of mitochondrial reactive oxygen species (ROS) release that protects CD4+ T cells from necrosis. Necrosis is a type of cell death that provokes inflammation, and it is prominently triggered by ROS release and its consequent oxidative stress. My finding that miR-23a curbs ROS-mediated necrosis highlights the essential role of this miRNA in maintaining immune homeostasis.

A key feature of miRNAs is their ability to modulate different biological aspects in different cell populations. Previously, my lab found that miR-23a potently suppresses CD8+ T cell cytotoxicity by restricting BLIMP1 expression. Since BLIMP1 has been found to inhibit T follicular helper (Tfh) differentiation by antagonizing the master transcription factor BCL6, I investigated whether miR-23a is also involved in Tfh differentiation. However, I found that miR-23a does not target BLIMP1 in CD4+ T cells and loss of miR-23a even fostered Tfh differentiation. This data indicate that miR-23a may target other pathways in CD4+ T cells regarding the Tfh differentiation pathway.

Although the lineage identity and regulatory networks for Tfh cells have been defined, the differentiation path of Tfh cells remains elusive. Two models have been proposed to explain the differentiation process of Tfh cells: in the parallel differentiation model, the Tfh lineage is segregated from other effector lineages at the early stage of antigen activation; alternatively, the sequential differentiation model suggests that naïve CD4+ T cells first differentiate into various effector lineages, then further program into Tfh cells. To address this question, I developed a novel in vitro co-culture system that employed antigen-specific CD4+ T cells, naïve B cells presenting cognate T cell antigen and BAFF-producing feeder cells to mimic germinal center. Using this system, I were able to robustly generate GC-like B cells. Notably, well-differentiated Th1 or Th2 effector cells also quickly acquired Tfh phenotype and function during in vitro co-culture, which suggested a sequential differentiation path for Tfh cells. To examine this path in vivo, under conditions of classical Th1- or Th2-type immunizations, I employed a TCRβ repertoire sequencing technique to track the clonotype origin of Tfh cells. Under both Th1- and Th2- immunization conditions, I observed profound repertoire overlaps between the Teff and Tfh populations, which strongly supports the proposed sequential differentiation model. Therefore, my studies establish a new platform to conveniently study Tfh-GC B cell interactions and provide insights into Tfh differentiation processes.