838 resultados para Modeling Rapport Using Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of female broiler breeders is of great importance for the country as poultry production is one of the largest export items, and Brazil is the second largest broiler meat exporter. Animal behavior is known as a response to the effect of several interaction factors among them the environment. In this way the internal housing environment is an element that gives hints regarding to the bird s thermal comfort. Female broiler breeder behavior, expresses in form of specific pattern the bird s health and welfare. This research had the objective of applying predictive statistical models through the use of simulation, presenting animal comfort scenarios facing distinct environmental conditions. The research was developed with data collected in a controlled environment using Hybro - PG® breeding submitted to distinct levels of temperature, three distinct types of standard ration and age. Descriptive and exploratory analysis were proceeded, and afterwards the modeling process using the Generalized Estimation Equation (GEE). The research allowed the development of the thermal comfort indicators by statistical model equations of predicting female broiler breeder behavior under distinct studied scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the imprecise nature of biological experiments, biological data is often characterized by the presence of redundant and noisy data. This may be due to errors that occurred during data collection, such as contaminations in laboratorial samples. It is the case of gene expression data, where the equipments and tools currently used frequently produce noisy biological data. Machine Learning algorithms have been successfully used in gene expression data analysis. Although many Machine Learning algorithms can deal with noise, detecting and removing noisy instances from the training data set can help the induction of the target hypothesis. This paper evaluates the use of distance-based pre-processing techniques for noise detection in gene expression data classification problems. This evaluation analyzes the effectiveness of the techniques investigated in removing noisy data, measured by the accuracy obtained by different Machine Learning classifiers over the pre-processed data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latin America is characterized by ethnic, geographical, cultural, and economic diversity; therefore, training in gastroenterology in the region must be considered in this context. The continent's medical education is characterized by a lack of standards and the volume of research continues to be relatively small. There is a multiplicity of events in general gastroenterology and in sub-disciplines, both at regional and local levels, which ensure that many colleagues have access to information. Medical education programs must be based on a clinical vision and be considered in close contact with the patients. The programs should be properly supervised, appropriately defined, and evaluated on a regular basis. The disparity between the patients' needs, the scarce resources available, and the pressures exerted by the health systems on doctors are frequent cited by those complaining of poor professionalism. Teaching development can play a critical role in ensuring the quality of teaching and learning in universities. Continuing professional development programs activities must be planned on the basis of the doctors' needs, with clearly defined objectives and using proper learning methodologies designed for adults. They must be evaluated and accredited by a competent body, so that they may become the basis of a professional regulatory system. The specialty has made progress in the last decades, offering doctors various possibilities for professional development. The world gastroenterology organization has contributed to the speciality through three distinctive, but closely inter-related, programs: Training Centers, Train-the-Trainers, and Global Guidelines, in which Latin America is deeply involved. (C) 2011 Baishideng. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formal Concept Analysis is an unsupervised machine learning technique that has successfully been applied to document organisation by considering documents as objects and keywords as attributes. The basic algorithms of Formal Concept Analysis then allow an intelligent information retrieval system to cluster documents according to keyword views. This paper investigates the scalability of this idea. In particular we present the results of applying spatial data structures to large datasets in formal concept analysis. Our experiments are motivated by the application of the Formal Concept Analysis idea of a virtual filesystem [11,17,15]. In particular the libferris [1] Semantic File System. This paper presents customizations to an RD-Tree Generalized Index Search Tree based index structure to better support the application of Formal Concept Analysis to large data sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binning and truncation of data are common in data analysis and machine learning. This paper addresses the problem of fitting mixture densities to multivariate binned and truncated data. The EM approach proposed by McLachlan and Jones (Biometrics, 44: 2, 571-578, 1988) for the univariate case is generalized to multivariate measurements. The multivariate solution requires the evaluation of multidimensional integrals over each bin at each iteration of the EM procedure. Naive implementation of the procedure can lead to computationally inefficient results. To reduce the computational cost a number of straightforward numerical techniques are proposed. Results on simulated data indicate that the proposed methods can achieve significant computational gains with no loss in the accuracy of the final parameter estimates. Furthermore, experimental results suggest that with a sufficient number of bins and data points it is possible to estimate the true underlying density almost as well as if the data were not binned. The paper concludes with a brief description of an application of this approach to diagnosis of iron deficiency anemia, in the context of binned and truncated bivariate measurements of volume and hemoglobin concentration from an individual's red blood cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HENRE II (Higher Education Network for Radiography in Europe)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of electricity markets operation has been gaining an increasing importance in last years, as result of the new challenges that the electricity markets restructuring produced. This restructuring increased the competitiveness of the market, but with it its complexity. The growing complexity and unpredictability of the market’s evolution consequently increases the decision making difficulty. Therefore, the intervenient entities are forced to rethink their behaviour and market strategies. Currently, lots of information concerning electricity markets is available. These data, concerning innumerous regards of electricity markets operation, is accessible free of charge, and it is essential for understanding and suitably modelling electricity markets. This paper proposes a tool which is able to handle, store and dynamically update data. The development of the proposed tool is expected to be of great importance to improve the comprehension of electricity markets and the interactions among the involved entities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal. Each agent has the knowledge about a different method for defining a strategy for playing in the market, the main agent chooses the best among all those, and provides it to the market player that requests, to be used in the market. This paper also presents a methodology to manage the efficiency/effectiveness balance of this method, to guarantee that the degradation of the simulator processing times takes the correct measure.