856 resultados para Mission requirements
Resumo:
Communication and coordination are two key-aspects in open distributed agent system, being both responsible for the system’s behaviour integrity. An infrastructure capable to handling these issues, like TuCSoN, should to be able to exploit modern technologies and tools provided by fast software engineering contexts. Thesis aims to demonstrate TuCSoN infrastructure’s abilities to cope new possibilities, hardware and software, offered by mobile technology. The scenarios are going to configure, are related to the distributed nature of multi-agent systems where an agent should be located and runned just on a mobile device. We deal new mobile technology frontiers concerned with smartphones using Android operating system by Google. Analysis and deployment of a distributed agent-based system so described go first to impact with quality and quantity considerations about available resources. Engineering issue at the base of our research is to use TuCSoN against to reduced memory and computing capability of a smartphone, without the loss of functionality, efficiency and integrity for the infrastructure. Thesis work is organized on two fronts simultaneously: the former is the rationalization process of the available hardware and software resources, the latter, totally orthogonal, is the adaptation and optimization process about TuCSoN architecture for an ad-hoc client side release.
Resumo:
Ground-based Earth troposphere calibration systems play an important role in planetary exploration, especially to carry out radio science experiments aimed at the estimation of planetary gravity fields. In these experiments, the main observable is the spacecraft (S/C) range rate, measured from the Doppler shift of an electromagnetic wave transmitted from ground, received by the spacecraft and coherently retransmitted back to ground. If the solar corona and interplanetary plasma noise is already removed from Doppler data, the Earth troposphere remains one of the main error sources in tracking observables. Current Earth media calibration systems at NASA’s Deep Space Network (DSN) stations are based upon a combination of weather data and multidirectional, dual frequency GPS measurements acquired at each station complex. In order to support Cassini’s cruise radio science experiments, a new generation of media calibration systems were developed, driven by the need to achieve the goal of an end-to-end Allan deviation of the radio link in the order of 3×〖10〗^(-15) at 1000 s integration time. The future ESA’s Bepi Colombo mission to Mercury carries scientific instrumentation for radio science experiments (a Ka-band transponder and a three-axis accelerometer) which, in combination with the S/C telecommunication system (a X/X/Ka transponder) will provide the most advanced tracking system ever flown on an interplanetary probe. Current error budget for MORE (Mercury Orbiter Radioscience Experiment) allows the residual uncalibrated troposphere to contribute with a value of 8×〖10〗^(-15) to the two-way Allan deviation at 1000 s integration time. The current standard ESA/ESTRACK calibration system is based on a combination of surface meteorological measurements and mathematical algorithms, capable to reconstruct the Earth troposphere path delay, leaving an uncalibrated component of about 1-2% of the total delay. In order to satisfy the stringent MORE requirements, the short time-scale variations of the Earth troposphere water vapor content must be calibrated at ESA deep space antennas (DSA) with more precise and stable instruments (microwave radiometers). In parallel to this high performance instruments, ESA ground stations should be upgraded to media calibration systems at least capable to calibrate both troposphere path delay components (dry and wet) at sub-centimetre level, in order to reduce S/C navigation uncertainties. The natural choice is to provide a continuous troposphere calibration by processing GNSS data acquired at each complex by dual frequency receivers already installed for station location purposes. The work presented here outlines the troposphere calibration technique to support both Deep Space probe navigation and radio science experiments. After an introduction to deep space tracking techniques, observables and error sources, in Chapter 2 the troposphere path delay is widely investigated, reporting the estimation techniques and the state of the art of the ESA and NASA troposphere calibrations. Chapter 3 deals with an analysis of the status and the performances of the NASA Advanced Media Calibration (AMC) system referred to the Cassini data analysis. Chapter 4 describes the current release of a developed GNSS software (S/W) to estimate the troposphere calibration to be used for ESA S/C navigation purposes. During the development phase of the S/W a test campaign has been undertaken in order to evaluate the S/W performances. A description of the campaign and the main results are reported in Chapter 5. Chapter 6 presents a preliminary analysis of microwave radiometers to be used to support radio science experiments. The analysis has been carried out considering radiometric measurements of the ESA/ESTEC instruments installed in Cabauw (NL) and compared with the requirements of MORE. Finally, Chapter 7 summarizes the results obtained and defines some key technical aspects to be evaluated and taken into account for the development phase of future instrumentation.
Resumo:
The hard X-ray band (10 - 100 keV) has been only observed so far by collimated and coded aperture mask instruments, with a sensitivity and an angular resolution lower than two orders of magnitude as respects the current X-ray focusing telescopes operating below 10 - 15 keV. The technological advance in X-ray mirrors and detection systems is now able to extend the X-ray focusing technique to the hard X-ray domain, filling the gap in terms of observational performances and providing a totally new deep view on some of the most energetic phenomena of the Universe. In order to reach a sensitivity of 1 muCrab in the 10 - 40 keV energy range, a great care in the background minimization is required, a common issue for all the hard X-ray focusing telescopes. In the present PhD thesis, a comprehensive analysis of the space radiation environment, the payload design and the resulting prompt X-ray background level is presented, with the aim of driving the feasibility study of the shielding system and assessing the scientific requirements of the future hard X-ray missions. A Geant4 based multi-mission background simulator, BoGEMMS, is developed to be applied to any high energy mission for which the shielding and instruments performances are required. It allows to interactively create a virtual model of the telescope and expose it to the space radiation environment, tracking the particles along their path and filtering the simulated background counts as a real observation in space. Its flexibility is exploited to evaluate the background spectra of the Simbol-X and NHXM mission, as well as the soft proton scattering by the X-ray optics and the selection of the best shielding configuration. Altough the Simbol-X and NHXM missions are the case studies of the background analysis, the obtained results can be generalized to any future hard X-ray telescope. For this reason, a simplified, ideal payload model is also used to select the major sources of background in LEO. All the results are original contributions to the assessment studies of the cited missions, as part of the background groups activities.
Resumo:
In most real-life environments, mechanical or electronic components are subjected to vibrations. Some of these components may have to pass qualification tests to verify that they can withstand the fatigue damage they will encounter during their operational life. In order to conduct a reliable test, the environmental excitations can be taken as a reference to synthesize the test profile: this procedure is referred to as “test tailoring”. Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this case, the duration of the original excitation which acts on the component for its entire life-cycle, typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” procedure lets to quantify the induced damage of the environmental vibration through two functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration in order to conduct accelerated tests. In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random vibrations, i.e. excitations composed of random vibrations superimposed on deterministic contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the sinusoidal components superimposed on the random process) in order to obtain reliable results. The classic time-domain approach is taken as a reference for the comparison of different methods for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to compute a Sine-on-Random specification based on a mission FDS is presented.
Night Vision Imaging System (NVIS) certification requirements analysis of an Airbus Helicopters H135
Resumo:
The safe operation of nighttime flight missions would be enhanced using Night Vision Imaging Systems (NVIS) equipment. This has been clear to the military since 1970s and to the civil helicopters since 1990s. In these last months, even Italian Emergency Medical Service (EMS) operators require Night Vision Goggles (NVG) devices that therefore amplify the ambient light. In order to fly with this technology, helicopters have to be NVIS-approved. The author have supported a company, to quantify the potentiality of undertaking the certification activity, through a feasibility study. Even before, NVG description and working principles have been done, then specifications analysis about the processes to make a helicopter NVIS-approved has been addressed. The noteworthy difference between military specifications and the civilian ones highlights non-irrevelant lacks in the latter. The activity of NVIS certification could be a good investment because the following targets have been achieved: Reductions of the certification cost, of the operating time and of the number of non-compliance.