915 resultados para Microscopic simulation models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate systems are of interest in many disciplines. They are often investigated using the discrete element method because of its capability to investigate particulate systems at the individual particle scale. To model the interaction between two particles and between a particle and a boundary, conventional discrete element models use springs and dampers in both the normal and tangential directions. The significance of particle rotation has been highlighted in both numerical studies and physical experiments. Several researchers have attempted to incorporate a rotational torque to account for the rolling resistance or rolling friction by developing different models. This paper presents a review of the commonly used models for rolling resistance and proposes a more general model. These models are classified into four categories according to their key characteristics. The robustness of these models in reproducing rolling resistance effects arising from different physical situations was assessed by using several benchmarking test cases. The proposed model can be seen to be more general and suitable for modelling problems involving both dynamic and pseudo-static regimes. An example simulation of the formation of a 2D sandpile is also shown. For simplicity, all formulations and examples are presented in 2D form, though the general conclusions are also applicable to 3D systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Well planned natural ventilation strategies and systems in the built environments may provide healthy and comfortable indoor conditions, while contributing to a significant reduction in the energy consumed by buildings. Computational Fluid Dynamics (CFD) is particularly suited for modelling indoor conditions in naturally ventilated spaces, which are difficult to predict using other types of building simulation tools. Hence, accurate and reliable CFD models of naturally ventilated indoor spaces are necessary to support the effective design and operation of indoor environments in buildings. This paper presents a formal calibration methodology for the development of CFD models of naturally ventilated indoor environments. The methodology explains how to qualitatively and quantitatively verify and validate CFD models, including parametric analysis utilising the response surface technique to support a robust calibration process. The proposed methodology is demonstrated on a naturally ventilated study zone in the library building at the National University of Ireland in Galway. The calibration process is supported by the on-site measurements performed in a normally operating building. The measurement of outdoor weather data provided boundary conditions for the CFD model, while a network of wireless sensors supplied air speeds and air temperatures inside the room for the model calibration. The concepts and techniques developed here will enhance the process of achieving reliable CFD models that represent indoor spaces and provide new and valuable information for estimating the effect of the boundary conditions on the CFD model results in indoor environments. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear phenomena play an essential role in the sound production process of many musical instruments. A common source of these effects is object collision, the numerical simulation of which is known to give rise to stability
issues. This paper presents a method to construct numerical schemes that conserve the total energy in simulations of one-mass systems involving collisions, with no conditions imposed on any of the physical or numerical parameters.
This facilitates the adaptation of numerical models to experimental data, and allows a more free parameter adjustment in sound synthesis explorations. The energy preservedness of the proposed method is tested and demonstrated though several examples, including a bouncing ball and a non-linear oscillator, and implications regarding the wider applicability are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear interactions take place in most systems that arise in music acoustics, usually as a result of player-instrument coupling. Several time-stepping methods exist for the numerical simulation of such systems. These methods generally involve the discretization of the Newtonian description of the system. However, it is not always possible to prove the stability of the resulting algorithms, especially when dealing with systems where the underlying force is a non-analytic function of the phase space variables. On the other hand, if the discretization is carried out on the Hamiltonian description of the system, it is possible to prove the stability of the derived numerical schemes. This Hamiltonian approach is applied to a series of test models of single or multiple nonlinear collisions and the energetic properties of the derived schemes are discussed. After establishing that the schemes respect the principle of conservation of energy, a nonlinear single-reed model is formulated and coupled to a digital bore, in order to synthesize clarinet-like sounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In finite difference time domain simulation of room acoustics, source functions are subject to various constraints. These depend on the way sources are injected into the grid and on the chosen parameters of the numerical scheme being used. This paper addresses the issue of selecting and designing sources for finite difference simulation, by first reviewing associated aims and constraints, and evaluating existing source models against these criteria. The process of exciting a model is generalized by introducing a system of three cascaded filters, respectively, characterizing the driving pulse, the source mechanics, and the injection of the resulting source function into the grid. It is shown that hard, soft, and transparent sources can be seen as special cases within this unified approach. Starting from the mechanics of a small pulsating sphere, a parametric source model is formulated by specifying suitable filters. This physically constrained source model is numerically consistent, does not scatter incoming waves, and is free from zero- and low-frequency artifacts. Simulation results are employed for comparison with existing source formulations in terms of meeting the spectral and temporal requirements on the outward propagating wave.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defining Simulation Intent involves capturing high level modelling and idealisation decisions in order to create an efficient and fit-for-purpose analysis. These decisions are recorded as attributes of the decomposed design space.

An approach to defining Simulation Intent is described utilising three known technologies: Cellular Modelling, the subdivision of space into volumes of simulation significance (structures, gas paths, internal and external airflows etc.); Equivalencing, maintaining a consistent and coherent description
of the equivalent representations of the spatial cells in different analysis models; and Virtual Topology, which offers tools for partitioning and de-partitioning the model without disturbing the manufacturing oriented design geometry. The end result is a convenient framework to which high level analysis attributes can be applied, and from which detailed analysis models can be generated
with a high degree of controllability, repeatability and automation. There are multiple novel aspects to the approach, including its reusability, robustness to changes in model topology and the inherent links created between analysis models at different levels of fidelity and physics.

By utilising Simulation Intent, CAD modelling for simulation can be fully exploited and simulation work-flows can be more readily automated, reducing many repetitive manual tasks (e.g. the definition of appropriate coupling between elements of different types and the application of boundary conditions). The approach has been implemented and tested with practical examples, and
significant benefits are demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural ventilation is a sustainable solution to maintaining healthy and comfortable environmental conditions in buildings. However, the effective design, construction and operation of naturally ventilated buildings require a good understanding of complex airflow patterns caused by the buoyancy and wind effects.The work presented in this article employed a 3D computational fluid dynamics (CFD) analysis in order to investigate environmental conditions and thermal comfort of the occupants of a highly-glazed naturally ventilated meeting room. This analysis was facilitated by the real-time field measurements performed in an operating building, and previously developed formal calibration methodology for reliable CFD models of indoor environments. Since, creating an accurate CFD model of an occupied space in a real-life scenario requires a high level of CFD expertise, trusted experimental data and an ability to interpret model input parameters; the calibration methodology guided towards a robust and reliable CFD model of the indoor environment. This calibrated CFD model was then used to investigate indoor environmental conditions and to evaluate thermal comfort indices for the occupants of the room. Thermal comfort expresses occupants' satisfaction with thermal environment in buildings by defining the range of indoor thermal environmental conditions acceptable to a majority of occupants. In this study, the thermal comfort analysis, supported by both field measurements and CFD simulation results, confirmed a satisfactory and optimal room operation in terms of thermal environment for the investigated real-life scenario. © 2013 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A PSS/E 32 model of a real section of the Northern Ireland electrical grid was dynamically controlled with Python 2.5. In this manner data from a proposed wide area monitoring system was simulated. The area is of interest as it is a weakly coupled distribution grid with significant distributed generation. The data was used to create an optimization and protection metric that reflected reactive power flow, voltage profile, thermal overload and voltage excursions. Step changes in the metric were introduced upon the operation of special protection systems and voltage excursions. A wide variety of grid conditions were simulated while tap changer positions and switched capacitor banks were iterated through; with the most desirable state returning the lowest optimization and protection metric. The optimized metric was compared against the metric generated from the standard system state returned by PSS/E. Various grid scenarios were explored involving an intact network and compromised networks (line loss) under summer maximum, summer minimum and winter maximum conditions. In each instance the output from the installed distributed generation is varied between 0 MW and 80 MW (120% of installed capacity). It is shown that in grid models the triggering of special protection systems is delayed by between 1 MW and 6 MW (1.5% to 9% of capacity), with 3.5 MW being the average. The optimization and protection metric gives a quantitative value for system health and demonstrates the potential efficacy of wide area monitoring for protection and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that the use of a recently proposed iterative collision model with interenvironment swaps displays a signature of strongly non-Markovian dynamics that is highly dependent on the establishment of system-environment correlations. Two models are investigated: one in which such correlations are canceled iteratively and one in which they are kept all across the dynamics. The degree of non-Markovianity, quantified using a measure based on the trace distance, is found to be much greater for all coupling strengths, when system-environment correlations are maintained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. 

Aims. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. 

Methods. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. 

Results. A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts the peak magnetic field amplitude. The current density and the moduli of the electromagnetic fields grow aperiodically in time and steadily along the direction that is anti-parallel to the cloud's velocity vector. The micro-cloud remains conjoined during the simulation. The instability induces an electrostatic wakefield in the background plasma. 

Conclusions. Relativistic clouds of leptons can generate and amplify magnetic fields even if they have a microscopic size, which implies that the underlying processes can be studied in the laboratory. The interaction of the localized magnetic field and high-energy leptons will give rise to synchrotron jitter radiation. The wakefield in the background plasma dissipates the kinetic energy of the lepton cloud. Even the fastest lepton micro-clouds can be slowed down by this collisionless mechanism. Moderately fast charge- and current neutralized lepton micro-clouds will deposit their energy close to relativistic shocks and hence they do not constitute an energy loss mechanism for the shock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-Zone modelling is used to assess three 1D impeller loss model collections. An automotive turbocharger centrifugal compressor is used for evaluation. The individual 1D losses are presented relative to each other at three tip speeds to provide a visual description of each author’s perception of the relative importance of each loss. The losses are compared with their resulting prediction of pressure ratio and efficiency, which is further compared with test data; upon comparison, a combination of the 1D loss collections is identified as providing the best performance prediction. 3D CFD simulations have also been carried out for the same geometry using a single passage model. A method of extracting 1D losses from CFD is described and utilised to draw further comparisons with the 1D losses. A 1D scroll volute model has been added to the single passage CFD results; good agreement with the test data is achieved. Short-comings in the existing 1D loss models are identified as a result of the comparisons with 3D CFD losses. Further comparisons are drawn between the predicted 1D data, 3D CFD simulation results, and the test data using a nondimensional method to highlight where the current errors exist in the 1D prediction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Heckman-type selection models have been used to control HIV prevalence estimates for selection bias when participation in HIV testing and HIV status are associated after controlling for observed variables. These models typically rely on the strong assumption that the error terms in the participation and the outcome equations that comprise the model are distributed as bivariate normal.
Methods: We introduce a novel approach for relaxing the bivariate normality assumption in selection models using copula functions. We apply this method to estimating HIV prevalence and new confidence intervals (CI) in the 2007 Zambia Demographic and Health Survey (DHS) by using interviewer identity as the selection variable that predicts participation (consent to test) but not the outcome (HIV status).
Results: We show in a simulation study that selection models can generate biased results when the bivariate normality assumption is violated. In the 2007 Zambia DHS, HIV prevalence estimates are similar irrespective of the structure of the association assumed between participation and outcome. For men, we estimate a population HIV prevalence of 21% (95% CI = 16%–25%) compared with 12% (11%–13%) among those who consented to be tested; for women, the corresponding figures are 19% (13%–24%) and 16% (15%–17%).
Conclusions: Copula approaches to Heckman-type selection models are a useful addition to the methodological toolkit of HIV epidemiology and of epidemiology in general. We develop the use of this approach to systematically evaluate the robustness of HIV prevalence estimates based on selection models, both empirically and in a simulation study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models of ground source heat pump (GSHP) systems are used as an aid for the correct design and optimization of the system. For this purpose, it is necessary to develop models which correctly reproduce the dynamic thermal behavior of each component in a short-term basis. Since the borehole heat exchanger (BHE) is one of the main components, special attention should be paid to ensuring a good accuracy on the prediction of the short-term response of the boreholes. The BHE models found in literature which are suitable for short-term simulations usually present high computational costs. In this work, a novel TRNSYS type implementing a borehole-to-ground (B2G) model, developed for modeling the short-term dynamic performance of a BHE with low computational cost, is presented. The model has been validated against experimental data from a GSHP system located at Universitat Politècnica de València, Spain. Validation results show the ability of the model to reproduce the short-term behavior of the borehole, both for a step-test and under normal operating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulation is a well-established and effective approach to the development of fuel-efficient and low-emissions vehicles in both on-highway and off-highway applications.

The simulation of on-highway automotive vehicles is widely reported in literature, whereas research relating to non-automotive and off-highway vehicles is relatively sparse. This review paper focuses on the challenges of simulating such vehicles and discusses the differences in the approach to drive cycle testing and experimental validation of vehicle simulations. In particular, an inner-city diesel-electric hybrid bus and an ICE (Internal Combustion Engine) powered forklift truck will be used as case studies.

Computer prediction of fuel consumption and emissions of automotive vehicles on standardised drive cycles is well-established and commercial software packages such as AVL CRUISE have been specifically developed for this purpose. The vehicles considered in this review paper present new challenges from both the simulation and drive-cycle testing perspectives. For example, in the case of the forklift truck, the drive cycles involve reversing elements, variable mass, lifting operations, and do not specify a precise velocity-time profile. In particular, the difficulties associated with the prediction of productivity, i.e. the maximum rate of completing a series of defined operations, are discussed. In the case of the hybrid bus, the standardised drive cycles are unrepresentative of real-life use and alternative approaches are required in the development of efficient and low-emission vehicles.

Two simulation approaches are reviewed: the adaptation of a standard automotive vehicle simulation package, and the development of bespoke models using packages such as MATLAB/Simulink.