854 resultados para Methicillin-resistant Staphylococcus Aureus
Resumo:
Mastitis is the most prevalent infectious disease in dairy herds. Breeding programs considering mastitis susceptibility were adopted as approaches to improve udder health status. In recent decades, conventional selection criteria based on phenotypic characteristics such as somatic cell score in milk have been widely used to select animals. Recently, approaches to incorporate molecular information have become feasible because of the detection of quantitative trait loci (QTL) affecting mastitis resistance. The aims of the study were to explore molecular mechanisms underlying mastitis resistance and the genetic mechanisms underlying a QTL on Bos taurus chromosome 18 found to influence udder health. Primary cell cultures of mammary epithelial cells from heifers that were selected for high or low susceptibility to mastitis were established. Selection based on estimated pedigree breeding value or on the basis of marker-assisted selection using QTL information was implemented. The mRNA expression of 10 key molecules of the innate immune system was measured using quantitative real-time PCR after 1, 6, and 24 h of challenge with heat-inactivated mastitis pathogens (Escherichia coli and Staphylococcus aureus) and expression levels in the high and low susceptibility groups were compared according to selection criteria. In the marker-assisted selection groups, mRNA expression in cells isolated from less-susceptible animals was significantly elevated for toll-like receptor 2, tumor necrosis factor-alpha, IL-1beta, IL-6, IL-8, RANTES (regulated upon activation, normal t-cell expressed and secreted), complement factor C3, and lactoferrin. In the estimated pedigree breeding value groups, mRNA expression was significantly elevated only for V-rel reticuloendotheliosis viral oncogene homolog A, IL-1 beta, and RANTES. These observations provide first insights into genetically determined divergent reactions to pathogens in the bovine mammary gland and indicate that the application of QTL information could be a successful tool for the selection of animals resistant to mastitis.
Resumo:
The dog is the natural host of Staphylococcus pseudintermedius. Many research efforts are currently being undertaken to expand our knowledge and understanding of this important canine commensal and opportunistic pathogen. The objective of this review is to summarize the current knowledge of the species, including the latest research outcomes, with emphasis on taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Despite the important taxonomic changes that have occurred over the past few years, the risk of misidentification in canine specimens is low and does not have serious consequences for clinical practice. Staphylococcus pseudintermedius carriage in the dog is more frequent and genetically heterogeneous compared with that of Staphylococcus aureus in man. It appears that these staphylococcal species have evolved separately through adaptation to their respective natural hosts and differ with regard to various aspects concerning ecology, population structure and evolution of antibiotic resistance. Further understanding of the ecology and epidemiology of S. pseudintermedius is hampered by the lack of a standard method for rapid and discriminatory typing and by the limited data available on longitudinal carriage and population structure of meticillin-susceptible strains. With regard to pathogenicity, it is only now that we are starting to explore the virulence potential of S. pseudintermedius based on genomic and proteomic approaches, and more research is needed to assess the importance of individual virulence factors and the possible existence of hypervirulent strains.
Resumo:
Coagulase-negative staphylococci (CNS; n=417) were isolated from bovine milk and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nineteen different species were identified, and Staphylococcus xylosus, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus sciuri were the most prevalent species. Resistance to oxacillin (47.0% of the isolates), fusidic acid (33.8%), tiamulin (31.9%), penicillin (23.3%), tetracycline (15.8%), streptomycin (9.6%), erythromycin (7.0%), sulfonamides (5%), trimethoprim (4.3%), clindamycin (3.4%), kanamycin (2.4%), and gentamicin (2.4%) was detected. Resistance to oxacillin was attributed to the mecA gene in 9.7% of the oxacillin-resistant isolates. The remaining oxacillin-resistant CNS did not contain the mecC gene or mecA1 promoter mutations. The mecA gene was detected in Staphylococcus fleurettii, Staphylococcus epidermidis, Staph. haemolyticus, and Staph. xylosus. Resistance to tetracycline was attributed to the presence of tet(K) and tet(L), penicillin resistance to blaZ, streptomycin resistance to str and ant(6)-Ia, and erythromycin resistance to erm(C), erm(B), and msr. Resistance to tiamulin and fusidic acid could not be attributed to an acquired resistance gene. In total, 15.1% of the CNS isolates were multidrug resistant (i.e., resistant to 2 or more antimicrobials). The remaining CNS isolates were susceptible to antimicrobials commonly used in mastitis treatment. Methicillin-resistant CNS isolates were diverse, as determined by mecA gene sequence analysis, staphylococcal cassette chromosome mec typing, and pulsed-field gel electrophoresis. Arginine catabolic mobile element types 1 and 3 were detected in both methicillin-resistant and methicillin-susceptible Staph. epidermidis and were associated with sequence types ST59 and ST111. Because this study revealed the presence of multidrug-resistant CNS in a heterogeneous CNS population, we recommend antibiogram analysis of CNS in persistent infections before treatment with antimicrobials.
Resumo:
Recently, a novel variant of mecA known as mecC (mecA(LGA251)) was identified in Staphylococcus aureus isolates from both humans and animals. In this study, we identified a Staphylococcus xylosus isolate that harbors a new allotype of the mecC gene, mecC1. Whole-genome sequencing revealed that mecC1 forms part of a class E mec complex (mecI-mecR1-mecC1-blaZ) located at the orfX locus as part of a likely staphylococcal cassette chromosome mec element (SCCmec) remnant, which also contains a number of other genes present on the type XI SCCmec.
Resumo:
A Tn916-like transposon (TnFO1) was found in the multiple antibiotic resistant Enterococcus faecalis strain FO1 isolated from a raw milk cheese. In this strain, the tetracycline determinant was localized by DNA-DNA hybridization with a tetM nucleotide probe on the chromosome and on a 30-kb plasmid. The transposon TnFO1 was identified and characterized by DNA-DNA hybridization experiments with the five internal HincII fragments of Tn916. The tetracycline resistance determinant was identified by its complete nucleotide sequence as TetM. Transposon TnFO1 was also detected in its circular form by DNA-DNA hybridization and PCR amplification. Both ends including the joining region of the closed circular transposon TnFO1 were sequenced. TnFO1 could be transferred by conjugation from Enterococcus faecalis into Enterococcus faecalis, Lactococcus lactis subsp. lactis biovar. diacetylactis, Listeria innocua, Leuconostoc mesenteroides and Staphylococcus aureus, and from Lactococcus lactis subsp. lactis biovar. diacetylactis into Listeria innocua. Pulsed-field electrophoresis of genomic DNA from E. faecalis FO1 transconjugants showed that transposon TnFO1 integrated at different sites.
Resumo:
The search for a specific rRNA methylase motif led to the identification of the new macrolide, lincosamide, and streptogramin B resistance gene erm(43) in Staphylococcus lentus. An inducible resistance phenotype was demonstrated by cloning and expressing erm(43) and its regulatory region in Staphylococcus aureus. The erm(43) gene was detected in two different DNA fragments, of 6,230 bp and 1,559 bp, that were each integrated at the same location in the chromosome in several S. lentus isolates of human, dog, and chicken origin.
Resumo:
The complete 50,237-bp DNA sequence of the conjugative and mobilizing multiresistance plasmid pRE25 from Enterococcus faecalis RE25 was determined. The plasmid had 58 putative open reading frames, 5 of which encode resistance to 12 antimicrobials. Chloramphenicol acetyltransferase and the 23S RNA methylase are identical to gene products of the broad-host-range plasmid pIP501 from Streptococcus agalactiae. In addition, a 30.5-kb segment is almost identical to pIP501. Genes encoding an aminoglycoside 6-adenylyltransferase, a streptothricin acetyltransferase, and an aminoglycoside phosphotransferase are arranged in tandem on a 7.4-kb fragment as previously reported in Tn5405 from Staphylococcus aureus and in pJH1 from E. faecalis. One interrupted and five complete IS elements as well as three replication genes were also identified. pRE25 was transferred by conjugation to E. faecalis, Listeria innocua, and Lactococcus lactis by means of a transfer region that appears similar to that of pIP501. It is concluded that pRE25 may contribute to the further spread of antibiotic-resistant microorganisms via food into the human community.
Resumo:
A novel erythromycin ribosome methylase gene, erm(44), that confers resistance to macrolide, lincosamide, and streptogramin B (MLSB) antibiotics was identified by whole-genome sequencing of the chromosome of Staphylococcus xylosus isolated from bovine mastitis milk. The erm(44) gene is preceded by a regulatory sequence that encodes two leader peptides responsible for the inducible expression of the methylase gene, as demonstrated by cloning in Staphylococcus aureus. The erm(44) gene is located on a 53-kb putative prophage designated ΦJW4341-pro. The 56 predicted open reading frames of ΦJW4341-pro are structurally organized into the five functional modules found in members of the family Siphoviridae. ΦJW4341-pro is site-specifically integrated into the S. xylosus chromosome, where it is flanked by two perfect 19-bp direct repeats, and exhibits the ability to circularize. The presence of erm(44) in three additional S. xylosus strains suggests that this putative prophage has the potential to disseminate MLSB resistance.
Resumo:
Las características y capacidades de los aceros inoxidables sinterizados se han investigado en una doble vertiente. Por una parte con vista a sus capacidades de resistencia a la oxidación en caliente y por otra parte se ha investigado su capacidad para retener microorganismos que contribuyan a la descontaminación de un ambiente. Por ello, para cada una de estas funciones se han utilizado los aceros inoxidables sinterizados, que se han considerado más adecuados. Para estudiar sus capacidades de resistencia a la oxidación en caliente se ha utilizado un acero inoxidable austenítico AISI 304L, un acero inoxidable ferrítico AISI 430L y un acero inoxidable Fe-16Cr-3Al. Para estudiar sus capacidades para retener microorganismos se ha utilizado un acero inoxidable austenítico AISI 316L, un acero inoxidable ferrítico AISI 430L y un acero inoxidable dúplex 50%/50% de los anteriores. Para esta última finalidad los aceros se han compactado a tres diferentes presiones 300, 500 y 700 MPa, a las que corresponden diferentes porosidades. En relación con el comportamiento frente a la oxidación en caliente, se han cuantificado los incrementos positivos o negativos de volumen, masa y densidad en los diferentes tipos de sinterización y estados de tratamiento de oxidación. Como tónica general de comportamiento, puede decirse que los aceros sinterizados bajo vacío son más resistentes a la oxidación, que los sinterizados en atmósfera de N2-5H2 y que los aceros inoxidables austeníticos son algo más resistentes, que los Cr-Al y estos, a su vez, más que los aceros inoxidables ferríticos. Respecto a la retención de microorganismos, los tres aceros inoxidables sinterizados se han ensayado en diferentes medios de cultivo, utilizando cuatro especies de bacterias. Los mejores resultados se han obtenido con Staphylococcus aureus, muy favorable para su observación y recuento. Se han cuantificado, una vez sinterizados y colonizados por los microorganismos, para cada material y presión de compactación, las áreas de cada uno de los poros y el número de microorganismos situados en los poros y en la superficie sin poros. Se ha establecido en cada caso la densidad de microorganismos en las zonas de poros y en las zonas sin poros. Como tónica general puede decirse, que los aceros inoxidables austeníticos aparecen más favorables para estos estudios, que los aceros dúplex y estos más que los inoxidables ferríticos. Asimismo, se desprende que las áreas de los poros dependen de forma unívoca de la presión de compactación y que para áreas de poros decrecientes las densidades de microorganismos son crecientes. En consecuencia, podría deducirse, que a igualdad de área de poros en una superficie, aquella que tuviera los poros más pequeños, retendría mayor cantidad de bacterias. ABSTRACT The characteristics and capacities of sintered stainless steels have been researched from two perspectives: firstly, with a view to their resistance to hot oxidation, and secondly their capacity to retain microorganisms able to decontaminate the environment. For both these functions, sintered stainless steels were used, which are considered to be the most fit for purpose. To study their resistance to hot oxidation, we used austenitic stainless steel AISI 304L, ferritic stainless steel AISI 430L and stainless steel Fe-16Cr-3Al. To study their ability to retain microorganisms, we used austenitic stainless steel AISI 316L, ferritic stainless steel AISI 430L, and duplex stainless steel, being a 50/50 blend of the two former ones. For this last purpose, the steels were compacted at three different pressures (300, 500 and 700 MPa) corresponding to different porosities. With regard to the hot oxidation, we quantified the positive or negative increments in volume, mass and density in the different types of sintering and oxidation treatment states. As a general performance trend, we observed that vacuum sintered steels are more resistant to oxidation than those sintered in an atmosphere of N2-5H2, and that austenitic stainless steels are slightly more resistant than the Cr-Al steels which, in turn, are more resistant than the ferritic stainless steels. With regard to the retention of microorganisms, the three sintered stainless steels were tested in different culture media using four types of bacteria. The best results for observation and counting were obtained with Staphylococcus aureus bacteria. Once sintered and colonized by microorganisms, for each material and compacting pressure we quantified the areas of the pores and the number of microorganisms situated in the pores and on the pore-free surface. In each case, the density of microorganisms in the pores and in the pore-free areas was established. As a general rule, we can say that the austenitic stainless steels appear to be more favourable for this type of study than the duplex steels which, in turn, are more favourable than the ferritic stainless steels. It also emerged that the areas with the pores depend unequivocally on the compacting pressure, and that the smaller the area of the pore the higher the density of the microorganisms. Consequently, it can be deduced that comparing an equal area of pores on a surface, the one with the smaller pores would retain a larger number of bacteria.
Resumo:
Due to the resurgence of tuberculosis and the emergence of multidrug-resistant strains, fluoroquinolones (FQ) are being used in selected tuberculosis patients, but FQ-resistant strains of Mycobacterium tuberculosis have rapidly begun to appear. The mechanisms involved in FQ resistance need to be elucidated if the effectiveness of this class of antibiotics is to be improved and prolonged. By using the rapid-growing Mycobacterium smegmatis as a model genetic system, a gene was selected that confers low-level FQ resistance when present on a multicopy plasmid. This gene, lfrA, encodes a putative membrane efflux pump of the major facilitator family, which appears to recognize the hydrophilic FQ, ethidium bromide, acridine, and some quaternary ammonium compounds. It is homologous to qacA from Staphylococcus aureus, tcmA, of Streptomyces glaucescens, and actII and mmr, both from Streptomyces coelicoler. Increased expression of lfrA augments the appearance of subsequent mutations to higher-level FQ resistance.
Resumo:
INTRODUÇÃO: A infecção por HIV-1 é um grave problema de saúde pública causando elevada taxa de morbidade e mortalidade. Entretanto, alguns indivíduos são considerados resistentes à infecção por HIV-1, mesmo após repetidas exposições ao vírus. Vários fatores imunológicos e genéticos podem estar associados a resistência à infecção, como ativação de componentes da imunidade inata e também devido ao baixo perfil de ativação das células T. É possível que nos indivíduos expostos e não infectados por HIV-1 (ENI) ocorra uma importante atuação das células T secretoras de IL-17 e IL-22, e também as células T reguladoras, pois são necessárias para a manutenção e homeostase das mucosas associadas ao intestino (GALT). OBJETIVO: Avaliar o fenótipo e a função de células TCD4+ e TCD8+ em casais sorodiscordante ao HIV-1, compostos por indivíduos ENI e os parceiros infectados por HIV-1. MÉTODOS: Os casais sorodiscordantes ao HIV-1, consistiam de 23 indivíduos expostos não-infectados (ENI), 14 mulheres e 9 homens, com mediana de 41 anos e 21 parceiros infectados por HIV-1 (HIV), 20 homens e 1 mulher com mediana de 41 anos. Os controles saudáveis foram 24 indivíduos (14 mulheres e 10 homens) com mediana de 37 anos. Os casais sorodiscordantes foram compostos por 16 heterossexuais e 7 homossexuais, com tempo de relacionamento de 13 anos. As frequências de células Th17, Th22 e Tc22, as células T polifuncionais foram analisadas em células mononucleares (CMNs) do sangue periférico, estimulados com peptídeos da região Gag do HIV-1 e da enterotoxina B do Staphylococcus aureus (SEB), a frequência de células T reguladoras, o perfil fenotípico de exaustão/diferenciação e a expressão da integrina alfa4?7 e CCR9 em células T, foram realizados por citometria de fluxo. RESULTADOS: No grupo HIV, as células T CD4+ e CD8+ do sangue periférico mostrou maior frequência de CD95 e PD-1 e baixa expressão de CD127 comparado ao grupo ENI e controle. A frequência de células Th17 em CMNs aumentou nos grupos ENI e HIV-1 na condição sem estímulo, contudo, após estímulo com os peptídeos da região p24 da Gag do HIV-1 induziu resposta somente no grupo HIV-1. O grupo ENI mostrou resposta antígeno-especifica somente para IL-22. Além disto, avaliando as células Tc22 e Th22, foi verificado aumento da resposta aos peptídeos da Gag e também ao SEB, nos grupos HIV e ENI. A presença de células T polifuncionais antígeno-especificas, secretoras de 5-4 citocinas, foi detectada apenas em células T CD38+ no grupo HIV, enquanto os indivíduos ENI mostraram resposta polifuncional por células T CD38- somente ao estímulo policlonal por SEB. Uma diminuição do número absoluto de células T reguladoras (CD4+CD25+CD127low/-Foxp3+) foi detectada no grupo HIV comparado ao ENI e controle, com maior expressão de moléculas HLA-DR e CD95. Além disto, foi detectado diminuição na frequência de células TCD8+ ?4?7+ no grupo ENI e de células TCD4+ alfa4beta7+ nos grupos ENI e HIV. Houve uma correlação positiva entre as células Tc22 e Th22 com as células TCD8+ e TCD4+ que expressam alfa4beta7, no grupo ENI e HIV-1. CONCLUSÃO: Os indivíduos ENI são capazes de desenvolver resposta antígeno-específicas relacionadas com a IL-22, que possui importante função na imunidade de mucosas. Além disto, mostram presença de células T polifuncionais com baixo perfil de ativação a estímulo policlonal. Os dados evidenciam que os indivíduos ENI, mostram indução de células Tc22, aumento de expressão de moléculas de migração para o intestino e equilíbrio entre as células efetoras e Treg, que em conjunto, devem exercer importante papel para a resistência à infecção por HIV-1
Resumo:
Alteration in the target sites of antibiotics is a common mechanism of resistance. Examples of clinical strains showing resistance can be found for every class of antibiotic, regardless of the mechanism of action. Target site changes often result from spontaneous mutation of a bacterial gene on the chromosome and selection in the presence of the antibiotic. Examples include mutations in RNA polymerase and DNA gyrase, resulting in resistance to the rifamycins and quinolones, respectively. In other cases, acquisition of resistance may involve transfer of resistance genes from other organisms by some form of genetic exchange (conjugation, transduction, or transformation). Examples of these mechanisms include acquisition of the mecA genes encoding methicillin resistance in Staphylococcus aureus and the various van genes in enterococci encoding resistance to glycopeptides. © 2005 Elsevier B.V. All rights reserved.
Resumo:
A series of N1-benzylideneheteroarylcarboxamidrazones was prepared in an automated fashion, and tested against Mycobacterium fortuitum in a rapid screen for antimycobacterial activity. Many of the compounds from this series were also tested against Mycobacterium tuberculosis, and the usefulness as M.fortuitum as a rapid, initial screen for anti-tubercular activity evaluated. Various deletions were made to the N1-benzylideneheteroarylcarboxamidrazone structure in order to establish the minimum structural requirements for activity. The N1-benzylideneheteroarylcarbox-amidrazones were then subjected to molecular modelling studies and their activities against M.fortuitum and M.tuberculosis were analysed using quantitative structure-analysis relationship (QSAR) techniques in the computational package TSAR (Oxford Molecular Ltd.). A set of equations predictive of antimycobacterial activity was hereby obtained. The series of N1-benzylidenehetero-arylcarboxamidrazones was also tested against a multidrug-resistant strain of Staphylococcus aureus (MRSA), followed by a panel of Gram-positive and Gram-negative bacteria, if activity was observed for MRSA. A set of antimycobacterial N1-benzylideneheteroarylcarboxamidrazones was hereby discovered, the best of which had MICs against m. fortuitum in the range 4-8μgml-1 and displayed 94% inhibition of M.tuberculosis at a concentration of 6.25μgml-1. The antimycobacterial activity of these compounds appeared to be specific, since the same compounds were shown to be inactive against other classes of organisms. Compounds which were found to be sufficiently active in any screen were also tested for their toxicity against human mononuclear leucocytes. Polyethylene glycol (PEG) was used as a soluble polymeric support for the synthesis of some fatty acid derivatives, containing an isoxazoline group, which may inhibit mycolic acid synthesis in mycobacteria. Both the PEG-bound products and the cleaved, isolated products themselves were tested against M.fortuitum and some low levels of antimycobacterial activity were observed, which may serve as lead compounds for further studies.
Resumo:
The aim of this research work was primarily to examine the relevance of patient parameters, ward structures, procedures and practices, in respect of the potential hazards of wound cross-infection and nasal colonisation with multiple resistant strains of Staphylococcus aureus, which it is thought might provide a useful indication of a patient's general susceptibility to wound infection. Information from a large cross-sectional survey involving 12,000 patients from some 41 hospitals and 375 wards was collected over a five-year period from 1967-72, and its validity checked before any subsequent analysis was carried out. Many environmental factors and procedures which had previously been thought (but never conclusively proved) to have an influence on wound infection or nasal colonisation rates, were assessed, and subsequently dismissed as not being significant, provided that the standard of the current range of practices and procedures is maintained and not allowed to deteriorate. Retrospective analysis revealed that the probability of wound infection was influenced by the patient's age, duration of pre-operative hospitalisation, sex, type of wound, presence and type of drain, number of patients in ward, and other special risk factors, whilst nasal colonisation was found to be influenced by the patient's age, total duration of hospitalisation, sex, antibiotics, proportion of occupied beds in the ward, average distance between bed centres and special risk factors. A multi-variate regression analysis technique was used to develop statistical models, consisting of variable patient and environmental factors which were found to have a significant influence on the risks pertaining to wound infection and nasal colonisation. A relationship between wound infection and nasal colonisation was then established and this led to the development of a more advanced model for predicting wound infections, taking advantage of the additional knowledge of the patient's state of nasal colonisation prior to operation.
Resumo:
Current evidence-based guidelines recommend that 2% (w/v) chlorhexidine digluconate (CHG), preferentially in 70% (v/v) isopropyl alcohol (IIPA), is used for skin antisepsis prior to incision of the skin. In this current study, the antimicrobial efficacy of CHG, six essential oils [tea tree oil (TTO), thymol, eucalyptus oil (EO), juniper oil, lavender oil and citronella] and novel benzylidenecarboxamidrazone and thiosemicarbazone compounds were determined against a panel of microorganisms commonly associated with skin infection (Staphylococcus epidermidis, S. aureus, meticillin-resistant S. aureus, Propionibacterium acnes, Acinetobacter spp., Pseudomonas aeruginosa and Candida albicans) The results demonstrated synergistic activity of CHG in combination with EO against biofilm cultures of S. epidermidis, with significantly reduced concentrations of CHG and EO required to inhibit biofilm growth compared to CHG or EO alone. Skin permeation of CHG was subsequently investigated using an in vitro human skin model (Franz cell) and the penetration profile was determined by serial sectioning of the full thickness human skin. Two percent (w/v) CHG in aqueous solution and in 70% (v/v) IPA demonstrated poor skin permeation; however, the skin permeation was significantly enhanced in combination with 5% - 50% (v/v) EO. Detectable levels of CHG did not permeate through full thickness skin in 24 h. Skin permeation of 2% (w/v) CHG in 70% (v/v) IPA in the presence of 10% (v/v) EO was subsequently studied. The results demonstrated a significantly enhanced skin penetration of CHG after a 2 min application, with CHG detected at significant levels to a depth of 600 m with CHG in combination with EO and IPA compared to 100 m with IPA alone. Combination antisepsis comprising CHG and EO may be beneficial for skin antisepsis prior to invasive procedures to reduce the number of microorganisms on and within the skin due to enhanced skin penetration of CHG and improved efficacy against S. epidermidis in a biofilm mode of growth.