899 resultados para Metal-cutting tools - Materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their numerous novel technological applications ranging from the example of exhaust catalysts in the automotive industry to the catalytic production of hydro- gen, surface reactions on transition metal substrates have become to be one of the most essential subjects within the surface science community. Although numerous applications exist, there are many details in the different processes that, after many decades of research, remain unknown. There are perhaps as many applications for the corrosion resistant materials such as stainless steels. A thorough knowledge of the details of the simplest reactions occuring on the surfaces, such as oxidation, play a key role in the design of better catalysts, or corrosion resistant materials in the future. This thesis examines the oxidation of metal surfaces from a computational point of view mostly concentrating on copper as a model material. Oxidation is studied from the initial oxidation to the oxygen precovered surface. Important parameters for the initial sticking and dissociation are obtained. The saturation layer is thoroughly studied and the calculated results arecompared with available experimental results. On the saturated surface, some open questions still remain. The present calculations demonstrate, that the saturated part of the surface is excluded from being chemically reactive towards the oxygen molecules. The results suggest, that the reason for the chemical activity of the saturated surface is due to a strain effect occuring between the saturated areas of the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoporous materials with large surface area and well-ordered pore structure have been synthesized. Thiol groups were grafted on the materials' surface to make heavy metal ion pre-concentration media. The adsorption properties ofthe materials were explored. Mercury, gold and silver can be strongly adsorbed by these materials, even in the presence of alkaline earth metal ion. Though the materials can adsorb other heavy metal ions such as lead and copper, they show differential adsorption ability when several ions are present in solution. The adsorption sequence is: mercury> == silver> copper » lead and cadmium. In the second part of this work, the memory effects of mercury, gold, silver and boron were investigated. The addition of 2% L-cysteine and 1% thiourea eliminates the problems of the three metal ions completely. The wash-out time for mercury dropped from more than 20 minutes to 18 seconds, and the wash-out time for gold decreased from more than 30 minutes to 49 seconds. The memory effect of boron can be reduced by the use of mannitol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation and characterization of two families of building blocks for molecule-based magnetic and conducting materials are described in three projects. In the first project the synthesis and characterization of three bis-imine ligands LI - L3 is reported. Coordination of LI to a series of metal salts afforded the five novel coordination complexes Sn(L4)C4 (I), [Mn(L4)(u-CI)(CI)(EtOH)h (II), [CU(L4)(u-sal) h(CI04)2 (sal = salicylaldehyde anion) (III), [Fe(Ls)2]CI (IV) and [Fe(LI)h(u-O) (V). All complexes have been structurally and magnetically characterized. X-ray diffraction studies revealed that, upon coordination to Lewis acidic metal salts, the imine bonds of LI are susceptible to nucleophilic attack. As a consequence, the coordination complexes (I) - (IV) contain either the cyclised ligand L4 or hydrolysed ligand Ls. In contrast, the dimeric Fe3+ complex (V) comprises two intact ligand LI molecules. In. this complex, the ligand chelates two Fe(III) centres in a bis-bidentate manner through the lone pairs of a phenoxy oxygen and an imine nitrogen atom. Magnetic studies of complexes (II-V) indicate that the dominant interactions between neighbouring metal centres in all of the complexes are antiferromagnetic. In the second project the synthesis and characterization two families of TTF donors, namely the cyano aryl compounds (VI) - (XI) and the his-aryl TTF derivatives (XII) - (XIV) are reported. The crystal structures of compounds (VI), (VII), (IX) and (XII) exhibit regular stacks comprising of neutral donors. The UV -Vis spectra of compounds (VI) - (XIV) present an leT band, indicative of the transfer of electron density from the TTF donors to the aryl acceptor molecules. Chemical oxidation of donors (VI), (VII), (IX) and (XII) with iodine afforded a series of CT salts that where possible have been characterized by single crystal X -ray diffraction. Structural studies showed that the radical cations in these salts are organized in stacks comprising of dimers of oxidized TTF donors. All four salts behave as semiconductors, displaying room temperature conductivities ranging from 1.852 x 10-7 to 9.620 X 10-3 Scm-I. A second series of CT salts were successfully prepared via the technique of electrocrystallization. Following this methodology, single crystals of two CT salts were obtained. The single crystal X-ray structures of both salts are isostructural, displaying stacks formed by trimers of oxidized donors. Variable temperature conductivity measurements carried out on this series of CT salts reveal they also are semiconductors with conductivities ranging from 2.94 x 10-7 to 1.960 X 10-3 S em-I at room temperature. In the third project the synthesis and characterization of a series of MII(hfac)2 coordination complexes of donor ligand (XII) where M2+ = Co2+, Cu2+, Ni2+ and Zn2+ are reported. These complexes crystallize in a head-to-tail arrangement of TTF donor and bipyridine moieties, placing the metal centres and hfac ligands are located outside the stacks. Magnetic studies of the complexes (XV) - (XVIII) indicate that the bulky hfac ligands prevent neighbouring metal centres from assembling in close proximity, and thus they are magnetically isolated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two classes of building blocks have been prepared and characterized and their coordination chemistry explored working towards the preparation of new molecule-based magnetic materials. In the first project, the amine functionality of 3,3'-diamino-2,2'- bipyridine was exploited for the preparation of a new family of ligands (H2L 1)-(H2L 4). The molecular structures of three ligands have been fully characterized by X-ray crystallography. [molecular structure diagram will not copy here, but is available in full pdf.] The coordination chemistry of these ligands with divalent first row transition metal ions was investigated. For ligand (H2L1), the molecular structures of four coordination complexes with stoichiometries [Zn2(Ll)(OAc)(MeO)]2 (I), [Cu2(L1)(OAc)2 (II), [Li(L1)]3 (III), and [Ni(L1)]3 (IV) were determined by X-ray crystallography. For ligand (H2L2), a Cu(II) complex of stoichiometry [Cu3(L2)(OAc)3MeO] (V) was determined by X-ray crystallography. The magnetic properties of complexes (II), (III), and (V) have been fully elucidated. In project two, synthetic strategies for the preparation of porphyrin molecules bearing triol substituents is presented. Following this approach, three new porphyrin derivatives have been prepared and characterized [Zn(HPTPP-CH2C(CH20H)3)] (VI), [P(TPP)(OCH2C(CH2)H)3)2]+CL- (VII), and [P(OEP)(C6H5)(OCH2C(CH2OH)3)]+Cl- (VIII). Attempts to exchange the labile methoxide bridges of a tetraironIIl single molecule magnet of stoichiometry [Fe4(OMe)6(dpm)6] (Hdpm = dipivaloylmethane) with the triol appended porphyrins will be discussed. [molecular structure diagram will not copy here, but is available in full pdf.]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The employment of the bridging/chelating Schiff bases, N-salicylidene-4-methyl-o-aminophenol (samphH2) and N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in nickel cluster chemistry has afforded eight polynuclear Ni(II) complexes with new structural motifs, interesting magnetic and optical properties, and unexpected organic ligand transformations. In the present thesis, Chapter 1 deals with all the fundamental aspects of polynuclear metal complexes, molecular magnetism and optics, while research results are reported in Chapters 2 and 3. In the first project (Chapter 2), I investigated the coordination chemistry of the organic chelating/bridging ligand, N-salicylidene-4-methyl-o-aminophenol (samphH2). The general NiII/tBuCO2-/samphH2 reaction system afforded two new tetranuclear NiII clusters, namely [Ni4(samph)4(EtOH)4] (1) and [Ni4(samph)4(DMF)2] (2), with different structural motifs. Complex 1 possessed a cubane core while in complex 2 the four NiII ions were located at the four vertices of a defective dicubane. The nature of the organic solvent was found to be of pivotal importance, leading to compounds with the same nuclearity, but different structural topologies and magnetic properties. The second project, the results of which are summarized in Chapter 3, included the systematic study of a new optically-active Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in NiII cluster chemistry. Various reactions between NiX2 (X- = inorganic anions) and nacbH2 were performed under basic conditions to yield six new polynuclear NiII complexes, namely (NHEt3)[Ni12(nacb)12(H2O)4](ClO4) (3), (NHEt3)2[Ni5(nacb)4(L)(LH)2(MeOH)] (4), [Ni5(OH)2(nacb)4(DMF)4] (5), [Ni5(OMe)Cl(nacb)4(MeOH)3(MeCN)] (6), (NHEt3)2[Ni6(OH)2(nacb)6(H2O)4] (7), and [Ni6(nacb)6(H2O)3(MeOH)6] (8). The nature of the solvent, the inorganic anion, X-, and the organic base were all found to be of critical importance, leading to products with different structural topologies and nuclearities (i.e., {Ni5}, {Ni6} and {Ni12}). Magnetic studies on all synthesized complexes revealed an overall ferromagnetic behavior for complexes 4 and 8, with the remaining complexes being dominated by antiferromagnetic exchange interactions. In order to assess the optical efficiency of the organic ligand when bound to the metal centers, photoluminescence studies were performed on all synthesized compounds. Complexes 4 and 5 show strong emission in the visible region of the electromagnetic spectrum. Finally, the ligand nacbH2 allowed for some unexpected organic transformations to occur; for instance, the pentanuclear compound 5 comprises both nacb2- groups and a new organic chelate, namely the anion of 5-chloro-2-[(3-hydroxy-4-oxo-1,4-dihydronaphthalen-1-yl)amino]benzoic acid. In the last section of this thesis, an attempt to compare the NiII cluster chemistry of the N-naphthalidene-2-amino-5-chlorobenzoic acid ligand with that of the structurally similar but less bulky, N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2), was made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nous avons mis au point une approche novatrice pour la synthèse d’un matériau de cathode pour les piles lithium-ion basée sur la décomposition thermique de l’urée. Les hydroxydes de métal mixte (NixMnxCo(1-2x)(OH)2) ont été préparés (x = 0.00 à 0.50) et subséquemment utilisés comme précurseurs à la préparation de l’oxyde de métal mixte (LiNixMnxCo(1-2x)O2). Ces matériaux, ainsi que le phosphate de fer lithié (LiFePO4), sont pressentis comme matériaux de cathode commerciaux pour la prochaine génération de piles lithium-ion. Nous avons également développé un nouveau traitement post-synthèse afin d’améliorer la morphologie des hydroxydes. L’originalité de l’approche basée sur la décomposition thermique de l’urée réside dans l’utilisation inédite des hydroxydes comme précurseurs à la préparation d’oxydes de lithium mixtes par l’intermédiaire d’une technique de précipitation uniforme. De plus, nous proposons de nouvelles techniques de traitement s’adressant aux méthodes de synthèses traditionnelles. Les résultats obtenus par ces deux méthodes sont résumés dans deux articles soumis à des revues scientifiques. Tous les matériaux produits lors de cette recherche ont été analysés par diffraction des rayons X (DRX), microscope électronique à balayage (MEB), analyse thermique gravimétrique (ATG) et ont été caractérisés électrochimiquement. La performance électrochimique (nombre de cycles vs capacité) des matériaux de cathode a été conduite en mode galvanostatique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work is to impart radiopacity in various natural polymers like chitosan, natural rubber and derivatives of chitosan and to characterize it. This thesis collated the radiopaque properties of these radiopaque polymers and various technological applications in the medical field. The applications of radiopaque polymers leads to an exploitation of radiopaque properties like X-ray visibility, optical density, effective atomic number, attenuation coefficient of biopolymers like chitosan, chitosan formate, chitosan acetate, carboxy methyl chitosan and natural rubber. The radiopaqe properties of these materials highly depend upon the size, shape, amount of radiopacifier and crystallinity of the radiopaque material. Radiopaque chitosan microspheres were prepared by cross linking with glutaraldehyde followed by the encapsulation of barium sulpahte. The effect of different emulsion systems on the morphology of chitosan microspheres were studied. The study concentrates radiopaque natural rubber for shielding applications. It reveals that to improve the particle size, morphology and crystalline phase of the zinc oxide particles, a novel method for the preparation of zinc oxide is adopted. A detailed radiopacity study was done in natural rubber containing 100phr precipitated zinc oxide prepared from different zinc salts. One of the significant findings of this investigation is that NR vulcanizates containing precipitated zinc oxide (from zinc acetate) shows higher attenuation coefficient. These interesting findings reveal the applications of these natural radiopaque systems in various fields like surgical tools, medical tubings, catheters, radiation shielding,etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discovery of coherent optical sources four decades ago has revolutionized all fields of scientific development. One of the path breaking applications of lasers is the emergence of various thermo optic techniques to unravel some of the mysteries of light matter interactions.Thermo optic technique is a valuable tool to evaluate optical and thermal properties of materials in solid,liquid and gaseous states .This technique can also be employed effectively in nondestructive quality evaluation. In this doctoral thesis , the use of photothermal techniques based on photoacoustic and photothermal deflection phenomena for the study of certain class of photonics materials such as semiconductors, nano metal dispersed ceramics, composites of conducting polymers and liquid crystals is elaborated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis deals with the synthesis and charcterisation of some supported transition metal complexes and their catalytic properties. Two industrially important reactions were carried out: i) cyclohexanol oxidation and ii) hydrodesulphurization of diesel. Thesis is divided into nine chapters. An overview of the heterogenised homogeneous systems is given in Chapter 1. Chapter 2 deals with the materials and methods used for the preparation and characterisation. Details regarding the synthesis and characterisation of zeolite encapsulated transition metal complexes are given in Chapter 3 to Chapter 7. In Chapter 8, the results of catalytic activity studies of the cyclohexanol oxidation using the zeolite encapsulated complexes are presented. Details of preparation of hydrodesulphurization catalysts through the molecular designed dispersion method, their characterization and catalytic activity studies are presented in Chapter 9. References are given at the end of the thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron and mixed iron aluminium pillared montmorillonites prepared by partial hydrolysis method was subjected to room temperature exchange with transition metals of the first series. The materials exhibit good structural as well as thermal stability. Exchanged metals were found to be present inside the porous network, in the environs of the pillars. Mixed pillaring resulted in the intercalation of Al 13 like polymers in which Al is partially substituted by Fe. The acidic structure was followed by temperature programmed desorption of ammonia and cumene cracking test reaction. Weak and medium sites overshadow the strong sites in all systems. However, exchange with metals increases the number of strong sites. The prepared materials are efficient catalysts for gas phase MTBE synthesis. The catalytic activity can be well correlated with the total amount of weak and medium acid sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal-loaded (3%) nanocrystalline sulfated titania (ST) powders are prepared using the sol–gel technique. Anatase is found as the active phase in all the samples. Sulfate ion impregnation decreases the crystallite size and stabilizes the anatase phase of TiO2. Acidity of the samples is found to increase by the incorporation of sulfate ion and also by the modification by transition metal ions. All the prepared catalysts are found stable up to 700 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Material synthesizing and characterization has been one of the major areas of scientific research for the past few decades. Various techniques have been suggested for the preparation and characterization of thin films and bulk samples according to the industrial and scientific applications. Material characterization implies the determination of the electrical, magnetic, optical or thermal properties of the material under study. Though it is possible to study all these properties of a material, we concentrate on the thermal and optical properties of certain polymers. The thermal properties are detennined using photothermal beam deflection technique and the optical properties are obtained from various spectroscopic analyses. In addition, thermal properties of a class of semiconducting compounds, copper delafossites, arc determined by photoacoustic technique.Photothermal technique is one of the most powerful tools for non-destructive characterization of materials. This forms a broad class of technique, which includes laser calorimetry, pyroelectric technique, photoacollstics, photothermal radiometric technique, photothermal beam deflection technique etc. However, the choice of a suitable technique depends upon the nature of sample and its environment, purpose of measurement, nature of light source used etc. The polynler samples under the present investigation are thermally thin and optically transparent at the excitation (pump beam) wavelength. Photothermal beam deflection technique is advantageous in that it can be used for the detennination of thermal diffusivity of samples irrespective of them being thermally thick or thennally thin and optically opaque or optically transparent. Hence of all the abovementioned techniques, photothemlal beam deflection technique is employed for the successful determination of thermal diffusivity of these polymer samples. However, the semi conducting samples studied are themlally thick and optically opaque and therefore, a much simpler photoacoustic technique is used for the thermal characterization.The production of polymer thin film samples has gained considerable attention for the past few years. Different techniques like plasma polymerization, electron bombardment, ultra violet irradiation and thermal evaporation can be used for the preparation of polymer thin films from their respective monomers. Among these, plasma polymerization or glow discharge polymerization has been widely lIsed for polymer thin fi Im preparation. At the earlier stages of the discovery, the plasma polymerization technique was not treated as a standard method for preparation of polymers. This method gained importance only when they were used to make special coatings on metals and began to be recognized as a technique for synthesizing polymers. Thc well-recognized concept of conventional polymerization is based on molecular processcs by which thc size of the molecule increases and rearrangemcnt of atoms within a molecule seldom occurs. However, polymer formation in plasma is recognized as an atomic process in contrast to the above molecular process. These films are pinhole free, highly branched and cross linked, heat resistant, exceptionally dielectric etc. The optical properties like the direct and indirect bandgaps, refractive indices etc of certain plasma polymerized thin films prepared are determined from the UV -VIS-NIR absorption and transmission spectra. The possible linkage in the formation of the polymers is suggested by comparing the FTIR spectra of the monomer and the polymer. The thermal diffusivity has been measured using the photothermal beam deflection technique as stated earlier. This technique measures the refractive index gradient established in the sample surface and in the adjacent coupling medium, by passing another optical beam (probe beam) through this region and hence the name probe beam deflection. The deflection is detected using a position sensitive detector and its output is fed to a lock-in-amplifIer from which the amplitude and phase of the deflection can be directly obtained. The amplitude and phase of the deflection signal is suitably analyzed for determining the thermal diffusivity.Another class of compounds under the present investigation is copper delafossites. These samples in the form of pellets are thermally thick and optically opaque. Thermal diffusivity of such semiconductors is investigated using the photoacoustic technique, which measures the pressure change using an elcctret microphone. The output of the microphone is fed to a lock-in-amplificr to obtain the amplitude and phase from which the thermal properties are obtained. The variation in thermal diffusivity with composition is studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltammetric sensors are an important class of electrochemical sensors in which the analytical information is obtained from the measurement of current obtained as a result of electrochemical oxidation/reduction.This current is proportional to the concentration of the analyte.Chemically modified electrodes(CMEs) have great significance as important analytical tools for the electrochemical determination of pharmaceuticals.The modification of electrode results in efficient determination of electro-active biomolecules at very lower potential without its major interferences.The operation mechanism of CMEs depends on the properties of the modifier materials that are used to promote selectivity towards the target analytes.Modified electrodes can be prepared by deposition of various compounds such as organic compounds ,conducting polymers,metal oxides,etc. on the various electrode surfaces.The thesis presents the development ,electrochemical characterization and analytical application studies of eight voltammetric sensors developed for six drugs viz.,Ambroxol,Sulfamethoxazole,PAM Chloride, Lamivudine,Metronidazole and Nimesulide.The modification techniques adopted as part of the present work include Multiwalled Carbon Nanotube(MWCNT) based modification.Electropolymerisation and Gold Nanoparticle (AuNP) based modifications.