991 resultados para Metal structures
Resumo:
In this work a new admittance spectroscopy technique is proposed to determine the conduction band offset in single quantum well structures (SQW). The proposed technique is based on the study of the capacitance derivative versus the frequency logarithm. This method is found to be less sensitive to parasitic effects, such as leakage current and series resistance, than the classical conductance analysis. Using this technique, we have determined the conduction band offset in In0.52Al0.48As/InxGa1¿xAs/In0.52Al0.48As SQW structures. Two different well compositions, x=0.53, which corresponds to the lattice¿matched case and x=0.60, which corresponds to a strained case, and two well widths (5 and 25 nm) have been considered. The average results are ¿Ec=0.49±0.04 eV for x=0.53 and ¿Ec =0.51±0.04 eV for x=0.6, which are in good agreement with previous reported data.
Resumo:
We report here on the growth of NiFe2O4 epitaxial thin films of different thickness (3 nm ¿ t ¿ 32 nm) on single crystalline substrates having spinel (MgAl2O4) or perovskite (SrTiO3) structure. Ultrathin films, grown on any of those substrates, display a huge enhancement of the saturation magnetization: we will show that partial cationic inversion may account for this enhancement, although we will argue that suppression of antiparallel collinear spin alignment due to size-effects cannot be excluded. Besides, for thicker films, the magnetization of films on MAO is found to be similar to that of bulk ferrite; in contrast, the magnetization of films on STO is substantially lower than bulk. We discuss on the possible mechanisms leading to this remarkable difference of magnetization.
Resumo:
The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to lowcost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options. ©2011 Optical Society of America OCIS codes: (230.2090) Electro-optical devices; (150.2950) Illumination.
Resumo:
Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.
Resumo:
An analysis of silicon on insulator structures obtained by single and multiple implants by means of Raman scattering and photoluminescence spectroscopy is reported. The Raman spectra obtained with different excitation powers and wavelengths indicate the presence of a tensile strain in the top silicon layer of the structures. The comparison between the spectra measured in both kinds of samples points out the existence in the multiple implant material of a lower strain for a penetration depth about 300 nm and a higher strain for higher penetration depths. These results have been correlated with transmission electron microscopy observations, which have allowed to associate the higher strain to the presence of SiO2 precipitates in the top silicon layer, close to the buried oxide. The found lower strain is in agreement with the better quality expected for this material, which is corroborated by the photoluminescence data.
The effects of electron-hole separation on the photoconductivity of individual metal oxide nanowires
Resumo:
The responses of individual ZnO nanowires to UV light demonstrate that the persistent photoconductivity (PPC) state is directly related to the electron¿hole separation near the surface. Our results demonstrate that the electrical transport in these nanomaterials is influenced by the surface in two different ways. On the one hand, the effective mobility and the density of free carriers are determined by recombination mechanisms assisted by the oxidizing molecules in air. This phenomenon can also be blocked by surface passivation. On the other hand, the surface built-in potential separates the photogenerated electron¿hole pairs and accumulates holes at the surface. After illumination, the charge separation makes the electron¿hole recombination difficult and originates PPC. This effect is quickly reverted after increasing either the probing current (self-heating by Joule dissipation) or the oxygen content in air (favouring the surface recombination mechanisms). The model for PPC in individual nanowires presented here illustrates the intrinsic potential of metal oxide nanowires to develop optoelectronic devices or optochemical sensors with better and new performances.
Resumo:
We work out a semiclassical theory of shot noise in ballistic n+-i-n+ semiconductor structures aiming at studying two fundamental physical correlations coming from Pauli exclusion principle and long-range Coulomb interaction. The theory provides a unifying scheme which, in addition to the current-voltage characteristics, describes the suppression of shot noise due to Pauli and Coulomb correlations in the whole range of system parameters and applied bias. The whole scenario is summarized by a phase diagram in the plane of two dimensionless variables related to the sample length and contact chemical potential. Here different regions of physical interest can be identified where only Coulomb or only Pauli correlations are active, or where both are present with different relevance. The predictions of the theory are proven to be fully corroborated by Monte Carlo simulations.
Resumo:
A microstructural analysis of silicon-on-insulator samples obtained by high dose oxygen ion implantation was performed by Raman scattering. The samples analyzed were obtained under different conditions thus leading to different concentrations of defects in the top Si layer. The samples were implanted with the surface covered with SiO2 capping layers of different thicknesses. The spectra measured from the as-implanted samples were fitted to a correlation length model taking into account the possible presence of stress effects in the spectra. This allowed quantification of both disorder effects, which are determined by structural defects, and residual stress in the top Si layer before annealing. These data were correlated to the density of dislocations remaining in the layer after annealing. The analysis performed corroborates the existence of two mechanisms that generate defects in the top Si layer that are related to surface conditions during implantation and the proximity of the top Si/buried oxide layer interface to the surface before annealing.
Resumo:
Phosphogysum (PG) or agricultural gypsum, a solid waste from the phosphate fertilizer industry, is used as soil amendment, especially on soils in the Cerrado region, in Brazil. This material may however contain natural radionuclides and metals which can be transferred to soils, plants and water sources. This paper presents and discusses the results of physical and chemical analyses that characterized samples of PG and compares them to the results found in two typical soils of the Cerrado, a clayey and sandy one. These analyses included: solid waste classification, evaluation of organic matter content and of P, K, Ca, Mg, and Al concentrations and of the mineralogical composition. Natural radionuclides and metal concentrations in PG and soil samples were also measured. Phosphogypsum was classified as Class II A - Not Dangerous, Not Inert, Not Corrosive and Not Reactive. The organic matter content in the soil samples was low and potential acidity high. In the mean, the specific 226Ra activity in the phosphogypsum samples (252 Bq kg-1) was below the maximum level recommended by USEPA, which is 370 Bq kg-1 for agricultural use. In addition, this study verified that natural radionuclides and metals concentrations in PG were lower than in the clayey Oxisol of Sete Lagoas, Minas Gerais, Brazil. These results indicated that the application of phosphogypsum as soil amendment in agriculture would not cause a significant impact on the environment.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
Using the once and thrice energy-weighted moments of the random-phase-approximation strength function, we have derived compact expressions for the average energy of surface collective oscillations of clusters and spheres of metal atoms. The L=0 volume mode has also been studied. We have carried out quantal and semiclassical calculations for Na and Ag systems in the spherical-jellium approximation. We present a rather thorough discussion of surface diffuseness and quantal size effects on the resonance energies.
Resumo:
Nonlocal approximations for the electronic exchange and correlation effects are used to compute, within density-functional theory, the polarizability and surface-plasma frequencies of small jelliumlike alkali-metal clusters. The results are compared with those obtained using the local-density approximation and with available experimental data, showing the relevance of these effects in obtaining an accurate description of the surface response of metallic clusters.
Resumo:
Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are presented for the barrier for the reaction Na20++Na20+¿Na402+. The deviation from the simple Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the supermolecule (Na20+)2. An extension of conventional quantum-chemical studies of homonuclear diatomic molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows the Na results to be utilized to make semiquantitative predictions of position and height of the maximum of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT calculations for the K clusters.