920 resultados para Medical climatology.
Resumo:
Department of Atmospheric Sciences, Cochin University of Science and Technology
Resumo:
A phantom that exhibits complex dielectric properties similar to low-water-content biological tissues over the electromagnetic spectrum of 2000–3000 MHz has been synthesized from carbon black, graphite powder, and poly vinyl acetate (PVA)-based adhesive. The material overcomes various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the material for various concentrations of carbon and graphite are studied. A combination of 50% poly-vinyl-acetate-based adhesive, 20% carbon, and 30% graphite exhibits a high absorption coefficient, which suggests another application of the material as a good microwave absorber for the interior lining of tomographic chamber in microwave imaging. The cavity-perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
Phantoms that exhibit complex dielectric properties similar to low water content biological tissues over the electromagnetic spectrum of 2–3 GHz have been synthesized from carbon black powder, graphite powder and polyvinyl-acetate-based adhesive. The materials overcome various problems that are inherent in conventional phantoms such as decomposition and deterioration due to the invasion of bacteria or mold. The absorption coefficients of the materials for various compositions of carbon black and graphite powder are studied. A combination of 50% polyvinylacetate- based adhesive, 20% carbon black powder and 30% graphite powder exhibits high absorption coefficient, which suggests another application of the material as good microwave absorber for interior lining of tomographic chamber in microwave imaging. Cavity perturbation technique is adopted to study the dielectric properties of the material.
Resumo:
A better understanding of the rainfall climatology of the Middle East region identifying the mechanisms responsible for the rain producing systems is essential for effective utilization of the water resources over the arid region. A comprehensive analysis on the rainfall climatology of the Middle East region is carried out to bring out the spatial and temporal variation of rainfall and mechanisms responsible for the rain events. The study was carried out utilizing rainfall, OLR, wind and humidity data sets procured from TRMM, NOAA and NCEP-NCAR. Climatology of annual rainfall brings out two areas of alarmingly low rainfall in the Middle East region: one in Egypt, Jordan and adjoining areas and the other in the southern part of Saudi Arabia. Daily rainfall analysis indicates that northern region gets rainfall mainly during winter and spring associated with the passage of Mediterranean low pressure systems whereas rain over the southern region is caused mainly by the monsoon organized convection, cross equatorial flow and remnants of low pressure systems associated with the monsoon during the summer season. Thermodynamic structure of the atmosphere reveals that the region does not have frequent local convection due to insufficient moisture content. The sinking motion associated with the sub tropic high pressure system and subsidence associated with the Walker circulation are responsible for maintaining warm and dry air over the region.
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
Optische Spektroskopie ist eine sehr wichtige Messtechnik mit einem hohen Potential für zahlreiche Anwendungen in der Industrie und Wissenschaft. Kostengünstige und miniaturisierte Spektrometer z.B. werden besonders für moderne Sensorsysteme “smart personal environments” benötigt, die vor allem in der Energietechnik, Messtechnik, Sicherheitstechnik (safety and security), IT und Medizintechnik verwendet werden. Unter allen miniaturisierten Spektrometern ist eines der attraktivsten Miniaturisierungsverfahren das Fabry Pérot Filter. Bei diesem Verfahren kann die Kombination von einem Fabry Pérot (FP) Filterarray und einem Detektorarray als Mikrospektrometer funktionieren. Jeder Detektor entspricht einem einzelnen Filter, um ein sehr schmales Band von Wellenlängen, die durch das Filter durchgelassen werden, zu detektieren. Ein Array von FP-Filter wird eingesetzt, bei dem jeder Filter eine unterschiedliche spektrale Filterlinie auswählt. Die spektrale Position jedes Bandes der Wellenlänge wird durch die einzelnen Kavitätshöhe des Filters definiert. Die Arrays wurden mit Filtergrößen, die nur durch die Array-Dimension der einzelnen Detektoren begrenzt werden, entwickelt. Allerdings erfordern die bestehenden Fabry Pérot Filter-Mikrospektrometer komplizierte Fertigungsschritte für die Strukturierung der 3D-Filter-Kavitäten mit unterschiedlichen Höhen, die nicht kosteneffizient für eine industrielle Fertigung sind. Um die Kosten bei Aufrechterhaltung der herausragenden Vorteile der FP-Filter-Struktur zu reduzieren, wird eine neue Methode zur Herstellung der miniaturisierten FP-Filtern mittels NanoImprint Technologie entwickelt und präsentiert. In diesem Fall werden die mehreren Kavitäten-Herstellungsschritte durch einen einzigen Schritt ersetzt, die hohe vertikale Auflösung der 3D NanoImprint Technologie verwendet. Seit dem die NanoImprint Technologie verwendet wird, wird das auf FP Filters basierende miniaturisierte Spectrometer nanospectrometer genannt. Ein statischer Nano-Spektrometer besteht aus einem statischen FP-Filterarray auf einem Detektorarray (siehe Abb. 1). Jeder FP-Filter im Array besteht aus dem unteren Distributed Bragg Reflector (DBR), einer Resonanz-Kavität und einen oberen DBR. Der obere und untere DBR sind identisch und bestehen aus periodisch abwechselnden dünnen dielektrischen Schichten von Materialien mit hohem und niedrigem Brechungsindex. Die optischen Schichten jeder dielektrischen Dünnfilmschicht, die in dem DBR enthalten sind, entsprechen einen Viertel der Design-Wellenlänge. Jeder FP-Filter wird einer definierten Fläche des Detektorarrays zugeordnet. Dieser Bereich kann aus einzelnen Detektorelementen oder deren Gruppen enthalten. Daher werden die Seitenkanal-Geometrien der Kavität aufgebaut, die dem Detektor entsprechen. Die seitlichen und vertikalen Dimensionen der Kavität werden genau durch 3D NanoImprint Technologie aufgebaut. Die Kavitäten haben Unterschiede von wenigem Nanometer in der vertikalen Richtung. Die Präzision der Kavität in der vertikalen Richtung ist ein wichtiger Faktor, der die Genauigkeit der spektralen Position und Durchlässigkeit des Filters Transmissionslinie beeinflusst.
Resumo:
We develop efficient techniques for the non-rigid registration of medical images by using representations that adapt to the anatomy found in such images. Images of anatomical structures typically have uniform intensity interiors and smooth boundaries. We create methods to represent such regions compactly using tetrahedra. Unlike voxel-based representations, tetrahedra can accurately describe the expected smooth surfaces of medical objects. Furthermore, the interior of such objects can be represented using a small number of tetrahedra. Rather than describing a medical object using tens of thousands of voxels, our representations generally contain only a few thousand elements. Tetrahedra facilitate the creation of efficient non-rigid registration algorithms based on finite element methods (FEM). We create a fast, FEM-based method to non-rigidly register segmented anatomical structures from two subjects. Using our compact tetrahedral representations, this method generally requires less than one minute of processing time on a desktop PC. We also create a novel method for the non-rigid registration of gray scale images. To facilitate a fast method, we create a tetrahedral representation of a displacement field that automatically adapts to both the anatomy in an image and to the displacement field. The resulting algorithm has a computational cost that is dominated by the number of nodes in the mesh (about 10,000), rather than the number of voxels in an image (nearly 10,000,000). For many non-rigid registration problems, we can find a transformation from one image to another in five minutes. This speed is important as it allows use of the algorithm during surgery. We apply our algorithms to find correlations between the shape of anatomical structures and the presence of schizophrenia. We show that a study based on our representations outperforms studies based on other representations. We also use the results of our non-rigid registration algorithm as the basis of a segmentation algorithm. That algorithm also outperforms other methods in our tests, producing smoother segmentations and more accurately reproducing manual segmentations.
Resumo:
A review article of the The New England Journal of Medicine refers that almost a century ago, Abraham Flexner, a research scholar at the Carnegie Foundation for the Advancement of Teaching, undertook an assessment of medical education in 155 medical schools in operation in the United States and Canada. Flexner’s report emphasized the nonscientific approach of American medical schools to preparation for the profession, which contrasted with the university-based system of medical education in Germany. At the core of Flexner’s view was the notion that formal analytic reasoning, the kind of thinking integral to the natural sciences, should hold pride of place in the intellectual training of physicians. This idea was pioneered at Harvard University, the University of Michigan, and the University of Pennsylvania in the 1880s, but was most fully expressed in the educational program at Johns Hopkins University, which Flexner regarded as the ideal for medical education. (...)
Resumo:
To coordinate ambulances for emergency medical services, a multiagent system uses an auction mechanism based on trust. Results of tests using real data show that this system can efficiently assign ambulances to patients, thereby reducing transportation time. Emergency transportation on specialized vehicles is needed when a person's health is in risk of irreparable damage. A patient can't benefit from sophisticated medical treatments and technologies if she or he isn't placed in a proper healthcare center with the appropriate medical team. For example, strokes are neurological emergencies involving a limited amount of time in which treatment measures are effective
Resumo:
This tutorial reviews the common elements that all journal articles contain (abstract, methods, etc.) and what can be learned from each element. In addition, the tutorial distinguishes between scholarly journal articles and other publications. The Health Education Assets Library (HEAL) is a digital library that provides freely accessible digital teaching resources of the highest quality that meet the needs of today's health sciences educators and learners.
Resumo:
Introduction: Comprehensive undergraduate education in clinical sciences is grounded on activities developed during clerkships. To implement the credits system we must know how these experiences take place. Objectives: to describe how students spend time in clerkships, how they assess the educative value of activities and the enjoyment it provides. Method: We distributed a form to a random clustered sample of a 100 students coursing clinical sciences, designed to record the time spent, and to assess the educative value and the grade of enjoyment of the activities in clerkship during a week. Data were registered and analyzed on Excel® 98 and SPSS. Results: mean time spent by students in clerkship activities on a day were 10.8 hours. Of those, 7.3 hours (69%) were spent in formal education activities. Patient care activities with teachers occupied the major proportion of time (15.4%). Of the teaching and learning activities in a week, 28 hours (56%) were spent in patient care activities and 22.4 hours (44.5%) were used in independent academic work. The time spent in teaching and learning activities correspond to 19 credits of a semester of 18 weeks. The activities assessed as having the major educational value were homework activities (4.6) and formal education activities (4.5). The graded as most enjoyable were extracurricular activities, formal educational activities and independent academic work. Conclusion: our students spend more time in activities with patients than the reported in literature. The attending workload of our students is greater than the one reported in similar studies.
Resumo:
Objective: to evaluate, with a preliminary study, the distribution of circadian rhythms, sleep schedule patterns and their relationship with academic performance on medical students. Methodology: in this descriptive study, a 10 item original questionnaire about sleep rhythms and academic performance was applied to medical students from different semesters. Week (class time) and weekend schedules, preferences, daytime somnolence and academic performance were asked. Three chronotypes (morningness, intermediate and eveningness) were defined among waking-sleeping preference, difficulty to sleep early, exam preparation preference hour and real sleep schedule. The sleep hour deficit per week night was also calculated. Results: Of the 318 medical students that answered the questionnaire, 62.6% corresponded to intermediate chronotypes, 8.8% to evening-type and 28.7% to morning-type. Significant difference was found among the two chronotype tails (p=0.000, Chi-square 31.13). No correlation was found between academic performance and age, sex, chronotype, week sleep deficit and sleep hours in week and weekends. A 71.1% of the students slept 6 or fewer hours during class time and 78% had a sleep deficit (more frequent in the evening chronotype). Conclusions: No relation was found between sleep chronotype and academic performance. Students tend to morningness. Few studies have been made on equatorial zones or without seasons
Resumo:
Evaluation processes in clinical practice have not been well, being their study focused on the technical issues concerning these processes. This study tried an approach to the evaluation processes through the analysis of perceptions from teachers and students about the methodology of evaluation considering the teachinglearning processes performed in a clinical practice of the Medicine Program –Universidad El Bosque from Bogota. With this purpose we conducted interviews with teachers and students searching the manner in which the evaluative, learning and teaching processes are done; then we analyzed the perception from both agents concerning the way these processes are related. The interviews were categorized bath deductively and inductively, and then contrasted with some current theories of learning, teaching and evaluation in medicine. The study showed that nowadays the evaluation and, in general, the educative processes are affected by several factors which are associated to the manner the professional practice is developed, and the educative process of the current teachers. We concluded there is no congrency between the approach of the evaluation, mainly conductivist, and the learning and teaching strategies mainly constructivist. This fact cause dissent in teachers and students.
Resumo:
Objective: To evaluate the flexible program implemented for the medical internship at School of Medicine, Universidad del Rosario during the period 1997-2002. Methodology: A descriptive study was performed to summarize the choices of medical clerkships made by the interns during the whole studied period. The coincidence with the further choice of a determined medical specialty was assessed. Conclusions: Most of the last year’s students remain preferring a conservative approach to their career, by choosing clerkships in a basic area, such as internal medicine, pediatrics, gynecology and obstetrics or general surgery. The coincidence between the type of internship or clerkships a student performs and the future election of a specialty is high.