956 resultados para Mathematical Techniques--Error Analysis
Resumo:
The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.
Resumo:
Current initiatives in the field of Business Process Management (BPM) strive for the development of a BPM standard notation by pushing the Business Process Modeling Notation (BPMN). However, such a proposed standard notation needs to be carefully examined. Ontological analysis is an established theoretical approach to evaluating modelling techniques. This paper reports on the outcomes of an ontological analysis of BPMN and explores identified issues by reporting on interviews conducted with BPMN users in Australia. Complementing this analysis we consolidate our findings with previous ontological analyses of process modelling notations to deliver a comprehensive assessment of BPMN.
Resumo:
Finite mixture models are being increasingly used to model the distributions of a wide variety of random phenomena. While normal mixture models are often used to cluster data sets of continuous multivariate data, a more robust clustering can be obtained by considering the t mixture model-based approach. Mixtures of factor analyzers enable model-based density estimation to be undertaken for high-dimensional data where the number of observations n is very large relative to their dimension p. As the approach using the multivariate normal family of distributions is sensitive to outliers, it is more robust to adopt the multivariate t family for the component error and factor distributions. The computational aspects associated with robustness and high dimensionality in these approaches to cluster analysis are discussed and illustrated.
Resumo:
This paper presents some initial attempts to mathematically model the dynamics of a continuous estimation of distribution algorithm (EDA) based on a Gaussian distribution and truncation selection. Case studies are conducted on both unimodal and multimodal problems to highlight the effectiveness of the proposed technique and explore some important properties of the EDA. With some general assumptions, we show that, for ID unimodal problems and with the (mu, lambda) scheme: (1). The behaviour of the EDA is dependent only on the general shape of the test function, rather than its specific form; (2). When initialized far from the global optimum, the EDA has a tendency to converge prematurely; (3). Given a certain selection pressure, there is a unique value for the proposed amplification parameter that could help the EDA achieve desirable performance; for ID multimodal problems: (1). The EDA could get stuck with the (mu, lambda) scheme; (2). The EDA will never get stuck with the (mu, lambda) scheme.
Resumo:
Purpose – The data used in this study is for the period 1980-2000. Almost midway through this period (in 1992), the Kenyan government liberalized the sugar industry and the role of the market increased, while the government's role with respect to control of prices, imports and other aspects in the sector declined. This exposed the local sugar manufacturers to external competition from other sugar producers, especially from the COMESA region. This study aims to find whether there were any changes in efficiency of production between the two periods (pre and post-liberalization). Design/methodology/approach – The study utilized two methodologies to efficiency estimation: data envelopment analysis (DEA) and the stochastic frontier. DEA uses mathematical programming techniques and does not impose any functional form on the data. However, it attributes all deviation from the mean function to inefficiencies. The stochastic frontier utilizes econometric techniques. Findings – The test for structural differences in the two periods does not show any statistically significant differences between the two periods. However, both methodologies show a decline in efficiency levels from 1992, with the lowest period experienced in 1998. From then on, efficiency levels began to increase. Originality/value – To the best of the authors' knowledge, this is the first paper to use both methodologies in the sugar industry in Kenya. It is shown that in industries where the noise (error) term is minimal (such as manufacturing), the DEA and stochastic frontier give similar results.
Resumo:
In this paper we propose a data envelopment analysis (DEA) based method for assessing the comparative efficiencies of units operating production processes where input-output levels are inter-temporally dependent. One cause of inter-temporal dependence between input and output levels is capital stock which influences output levels over many production periods. Such units cannot be assessed by traditional or 'static' DEA which assumes input-output correspondences are contemporaneous in the sense that the output levels observed in a time period are the product solely of the input levels observed during that same period. The method developed in the paper overcomes the problem of inter-temporal input-output dependence by using input-output 'paths' mapped out by operating units over time as the basis of assessing them. As an application we compare the results of the dynamic and static model for a set of UK universities. The paper is suggested that dynamic model capture the efficiency better than static model. © 2003 Elsevier Inc. All rights reserved.
Resumo:
This thesis presents theoretical investigation of three topics concerned with nonlinear optical pulse propagation in optical fibres. The techniques used are mathematical analysis and numerical modelling. Firstly, dispersion-managed (DM) solitons in fibre lines employing a weak dispersion map are analysed by means of a perturbation approach. In the case of small dispersion map strengths the average pulse dynamics is described by a perturbation approach (NLS) equation. Applying a perturbation theory, based on the Inverse Scattering Transform method, an analytic expression for the envelope of the DM soliton is derived. This expression correctly predicts the power enhancement arising from the dispersion management.Secondly, autosoliton transmission in DM fibre systems with periodical in-line deployment of nonlinear optical loop mirrors (NOLMs) is investigated. The use of in-line NOLMs is addressed as a general technique for all-optical passive 2R regeneration of return-to-zero data in high speed transmission system with strong dispersion management. By system optimisation, the feasibility of ultra-long single-channel and wavelength-division multiplexed data transmission at bit-rates ³ 40 Gbit s-1 in standard fibre-based systems is demonstrated. The tolerance limits of the results are defined.Thirdly, solutions of the NLS equation with gain and normal dispersion, that describes optical pulse propagation in an amplifying medium, are examined. A self-similar parabolic solution in the energy-containing core of the pulse is matched through Painlevé functions to the linear low-amplitude tails. The analysis provides a full description of the features of high-power pulses generated in an amplifying medium.