994 resultados para Maimonides, Moses, 1135-1204.
Resumo:
La berenjena (Solanum melongena L.) es una planta solanácea de múltiples variedades, cuyos ancestros salvajes se sitúan en Indochina y el este de África. Su cultivo fue muy temprano en zonas de China e India. Aun así, no se extendió al Occidente antiguo ni apenas se conoció, de ahí su ausencia en los textos clásicos de botánica y farmacología. Fueron los árabes quienes llevaron el cultivo de la planta por el Norte de África y Al-Andalus, de donde pasó ya a Europa. Los primeros testimonios occidentales de la berenjena aparecen en traducciones latinas de textos árabes, para incorporarse luego a la literatura farmacológica medieval y, más tarde ya, a la del Renacimiento, que empezó a tratar de ella por su posible parecido con una especie de mandrágora. Pese a que se le reconocían algunas virtudes medicinales, siempre se la tuvo bajo sospecha por ser de sabor poco agradable, indigesta y causante de algunas afecciones. Solo los botánicos de finales del Renacimiento describirían la planta y sus variedades con criterios más «científicos» y botánicos, ya sin apenas intereses farmacológicos.
Resumo:
My thesis explores the formation of the subject in the novels of Faulkner’s Go Down, Moses, Toni Morrison’s Song of Solomon, and Gloria Naylor’s Mama Day. I attach the concept of property in terms of how male protagonists are obsessed with materialistic ownership and with the subordination of women who, as properties, consolidate their manhood. The three novelists despite their racial, gendered, and literary differences share the view that identity and truth are mere social and cultural constructs. I incorporate the work of Judith Butler and other poststructuralist figures, who see identity as a matter of performance rather than a natural entity. My thesis explores the theme of freedom, which I attached to the ways characters use their bodies either to confine or to emancipate themselves from the restricting world of race, class, and gender. The three novelists deconstruct any system of belief that promulgates the objectivity of truth in historical documents. History in the three novels, as with the protagonists, perception of identity, remains a social construct laden with distortions to serve particular political or ideological agendas. My thesis gives voice to African American female characters who are associated with love and racial and gender resistance. They become the reservoirs of the African American legacy in terms of their association with the oral and intuitionist mode of knowing, which subverts the male characters’ obsession with property and with the mainstream empiricist world. In this dissertation, I use the concept of hybridity as a literary and theoretical devise that African-American writers employ. In effect, I embark on the postcolonial studies of Henry Louise Gates, Paul Gilroy, W. E. B Du Bois, James Clifford, and Arjun Appadurai in order to reflect upon the fluidity of Morrison’s and Naylor’s works. I show how these two novelists subvert Faulkner’s essentialist perception of truth, and of racial and gendered identity. They associate the myth of the Flying African with the notion of hybridity by making their male protagonists criss-cross Northern and Southern regions. I refer to Mae Gwendolyn Henderson’s article on “Speaking in Tongues” in my analysis of how Naylor subverts the patriarchal text of both Faulkner and Morrison in embarking on a more feminine version of the flying African, which she relates to an ex-slave, Sapphira Wade, a volatile female character who resists fixed claim over her story and identity. In dealing with the concept of hybridity, I show that Naylor rewrites both authors’ South by making Willow Springs a more fluid space, an assumption that unsettles the scores of critics who associate the island with authenticity and exclusive rootedness.
Resumo:
A planar polynomial differential system has a finite number of limit cycles. However, finding the upper bound of the number of limit cycles is an open problem for the general nonlinear dynamical systems. In this paper, we investigated a class of Liénard systems of the form x'=y, y'=f(x)+y g(x) with deg f=5 and deg g=4. We proved that the related elliptic integrals of the Liénard systems have at most three zeros including multiple zeros, which implies that the number of limit cycles bifurcated from the periodic orbits of the unperturbed system is less than or equal to 3.
Resumo:
Networked control over data networks has received increasing attention in recent years. Among many problems in networked control systems (NCSs) is the need to reduce control latency and jitter and to deal with packet dropouts. This paper introduces our recent progress on a queuing communication architecture for real-time NCS applications, and simple strategies for dealing with packet dropouts. Case studies for a middle-scale process or multiple small-scale processes are presented for TCP/IP based real-time NCSs. Variations of network architecture design are modelled, simulated, and analysed for evaluation of control latency and jitter performance. It is shown that a simple bandwidth upgrade or adding hierarchy does not necessarily bring benefits for performance improvement of control latency and jitter. A co-design of network and control is necessary to maximise the real-time control performance of NCSs
Resumo:
Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.
Resumo:
Developmental progression and differentiation of distinct cell types depend on the regulation of gene expression in space and time. Tools that allow spatial and temporal control of gene expression are crucial for the accurate elucidation of gene function. Most systems to manipulate gene expression allow control of only one factor, space or time, and currently available systems that control both temporal and spatial expression of genes have their limitations. We have developed a versatile two-component system that overcomes these limitations, providing reliable, conditional gene activation in restricted tissues or cell types. This system allows conditional tissue-specific ectopic gene expression and provides a tool for conditional cell type- or tissue-specific complementation of mutants. The chimeric transcription factor XVE, in conjunction with Gateway recombination cloning technology, was used to generate a tractable system that can efficiently and faithfully activate target genes in a variety of cell types. Six promoters/enhancers, each with different tissue specificities (including vascular tissue, trichomes, root, and reproductive cell types), were used in activation constructs to generate different expression patterns of XVE. Conditional transactivation of reporter genes was achieved in a predictable, tissue-specific pattern of expression, following the insertion of the activator or the responder T-DNA in a wide variety of positions in the genome. Expression patterns were faithfully replicated in independent transgenic plant lines. Results demonstrate that we can also induce mutant phenotypes using conditional ectopic gene expression. One of these mutant phenotypes could not have been identified using noninducible ectopic gene expression approaches.
Resumo:
Many industrial processes and systems can be modelled mathematically by a set of Partial Differential Equations (PDEs). Finding a solution to such a PDF model is essential for system design, simulation, and process control purpose. However, major difficulties appear when solving PDEs with singularity. Traditional numerical methods, such as finite difference, finite element, and polynomial based orthogonal collocation, not only have limitations to fully capture the process dynamics but also demand enormous computation power due to the large number of elements or mesh points for accommodation of sharp variations. To tackle this challenging problem, wavelet based approaches and high resolution methods have been recently developed with successful applications to a fixedbed adsorption column model. Our investigation has shown that recent advances in wavelet based approaches and high resolution methods have the potential to be adopted for solving more complicated dynamic system models. This chapter will highlight the successful applications of these new methods in solving complex models of simulated-moving-bed (SMB) chromatographic processes. A SMB process is a distributed parameter system and can be mathematically described by a set of partial/ordinary differential equations and algebraic equations. These equations are highly coupled; experience wave propagations with steep front, and require significant numerical effort to solve. To demonstrate the numerical computing power of the wavelet based approaches and high resolution methods, a single column chromatographic process modelled by a Transport-Dispersive-Equilibrium linear model is investigated first. Numerical solutions from the upwind-1 finite difference, wavelet-collocation, and high resolution methods are evaluated by quantitative comparisons with the analytical solution for a range of Peclet numbers. After that, the advantages of the wavelet based approaches and high resolution methods are further demonstrated through applications to a dynamic SMB model for an enantiomers separation process. This research has revealed that for a PDE system with a low Peclet number, all existing numerical methods work well, but the upwind finite difference method consumes the most time for the same degree of accuracy of the numerical solution. The high resolution method provides an accurate numerical solution for a PDE system with a medium Peclet number. The wavelet collocation method is capable of catching up steep changes in the solution, and thus can be used for solving PDE models with high singularity. For the complex SMB system models under consideration, both the wavelet based approaches and high resolution methods are good candidates in terms of computation demand and prediction accuracy on the steep front. The high resolution methods have shown better stability in achieving steady state in the specific case studied in this Chapter.
Resumo:
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the mineral stercorite H(NH4)Na(PO4)·4H2O. The mineral stercorite originated from the Petrogale Cave, Madura, Eucla, Western Australia. This cave is one of many caves in the Nullarbor Plain in the South of Western Australia. These caves have been in existence for eons of time and have been dated at more than 550 million years old. The mineral is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm−1 defines the presence of phosphate in the mineral. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm−1. Raman spectroscopy shows the mineral is based upon the phosphate anion and not the hydrogen phosphate anion. Raman and infrared bands are found and assigned to PO43−, H2O, OH and NH stretching vibrations. The detection of stercorite by Raman spectroscopy shows that the mineral can be readily determined; as such the application of a portable Raman spectrometer in a ‘cave’ situation enables the detection of minerals, some of which may remain to be identified.
Resumo:
The results of pressure-tuning Raman spectroscopic, X-ray powder diffraction and solid-state 13C-NMR studies of selected dicarboxylate anions intercalated in a Mg-Al layered double hydroxide (talcite) lattice are reported. The pressure dependences of the vibrational modes are linear for pressures up to 4.6 GPa indicating that no phase transitions occur. The interlayer spacings show that the oxalate, malonate and succinate dianions are oriented perpendicular to the layers, but the glutarate and adipate are tilted. The solid-state 13C-NMR spectra of these materials show full chemical shift anisotropy and, therefore, the anions are not mobile at room temperature.