969 resultados para Macrophages péritonéaux


Relevância:

10.00% 10.00%

Publicador:

Resumo:

RÉSUMÉ : Chez l'homme, le manque de sélectivité des agents thérapeutiques représente souvent une limitation pour le traitement des maladies. Le ciblage de ces agents pour un tissu défini pourrait augmenter leur sélectivité et ainsi diminuer les effets secondaires en comparaison d'agents qui s'accumuleraient dans tout le corps. Cela pourrait aussi améliorer l'efficacité des traitements en permettant d'avoir une concentration localisée plus importante. Le ciblage d'agents thérapeutiques est un champ de recherche très actif. Les stratégies sont généralement basées sur les différences entre cellules normales et malades. Ces différences peuvent porter soit sur l'expression des molécules à leurs surfaces comme des récepteurs ou des transporteurs, soit sur les activités enzymatiques exprimées. Le traitement thérapeutique choisi ici est la thérapie photodynamique et est déjà utilisé pour le traitement de certains cancers. Cette thérapie repose sur l'utilisation de molécules qui réagissent à la lumière, les photosensibilisants. Elles absorbent l'énergie lumineuse et réagissent avec l'oxygène pour former des radicaux toxiques pour les cellules. Les photosensibilisants utilisés ici sont de deux natures : (i) soit ils sont tétrapyroliques (comme les porphyrines et chlorines), c'est à dire qu'ils sont directement activables par la lumière ; (ii) soit ce sont des prodrogues de photosensibilisants comme l'acide 5aminolévulinique (ALA) qui est transformé dans la cellule en protoporphyrine IX photosensibilisante. Dans le but d'augmenter la sélectivité des photosensibilisants, nous avons utilisé deux stratégies différentes : (i) le photosensibilisant est modifié par le greffage d'un agent de ciblage ; (ii) le photosensibilisant est incorporé dans des structures moléculaires de quelques centaines de nanomètres. Les sucres et l'acide folique sont des agents de ciblage largement établis et ont été utilisés ici car leurs récepteurs sont surexprimés à la surface de nombreuses cellules malades. Ainsi, des dérivés sucres ou acide folique de l'ALA ont été synthétisés et évalués in vitro sur de nombreuses lignées cellulaires cancéreuses. La stratégie utilisant l'acide folique est apparue incompatible avec l'utilisation de l'ALA puisque aucune photosensibilité n'a été induite par le composé. La stratégie utilisant les sucres a, par ailleurs, provoquée de bonnes photosensibilités mais pas d'augmentation de sélectivité. En parallèle, la combinaison entre les propriétés anticancéreuses des complexes métalliques au ruthénium avec les propriétés photosensibilisantes des porphyrines, a été évaluée. En effet, les thérapies combinées ont émergé il y a une dizaine d'années et représentent aujourd'hui de bonnes alternatives aux monothérapies classiques. Des ruthenium(I1)-arènes complexés avec la tetrapyridylporphyrine ont ainsi présenté de bonnes cytotoxicités et de bonnes phototoxicités pour des cellules de mélanomes. Des porphyrines ont aussi été compléxées avec des noyaux de diruthénium et ce type de dérivé a présenté de bonnes phototoxicités et une bonne sélectivité pour les cellules cancéreuses de l'appareil reproducteur féminin. L'incorporation de photosensibilisants tétrapyroliques a finalement été effectuée en utilisant des nanoparticules (NP) biocompatibles composées de chitosan et de hyaluronate. L'effet de ces NP a été évalué pour le traitement de la polyarthrite rhumatoïde (PR). Les NP ont d'abord été testées in vitro avec des macrophages de souris et les résultats ont mis en évidence de bonnes sélectivités et photosensibilités pour ces cellules. In vivo chez un modèle marin de la PR, l'utilisation de ces NP a révélé un plus grand temps de résidence des NP dans le genou de la souris en comparaison du temps obtenu avec le photosensibilisant seul. Le traitement par PDT a aussi démontré une bonne efficacité par ailleurs égale à celle obtenue avec les corticoïdes utilisés en clinique. Pour finir, les NP ont aussi démontré une bonne efficacité sur les myelomonocytes phagocytaires humains et sur les cellules contenues dans le liquide synovial de patients présentant une PR. Tous ces résultats suggèrent que les deux stratégies de ciblage peuvent être efficaces pour les agents thérapeutiques. Afm d'obtenir de bons résultats, il est toutefois nécessaire de réaliser une analyse minutieuse de la cible et du mode d'action de l'agent thérapeutique. Concernant les perspectives, la combinaison des deux stratégies c'est à dire incorporer des agents thérapeutiques dans des nanostructures porteuses d'agents de ciblage, représente probablement une solution très prometteuse. SUMMARY : In humans, the lack of selectivity of drugs and their high effective concentrations often represent limitations for the treatment of diseases. Targeting the therapeutical agents to a defined tissue could enhance their selectivity and then diminish their side effects when compared to drugs that accumulate in the entire body and could also improve treatment efûciency by allowing a localized high concentration of the agents. Targeting therapeutics to defined cells in human pathologies is a main challenge and a very active field of research. Strategies are generally based on the different behaviors and patterns of expression of diseased cells compared to normal cells such as receptors, proteases or trans-membrane carriers. The therapeutic treatment chosen here is the photodynamic therapy and is already used in the treatment of many cancers. This therapy relies on the administration of a photosensitizer (PS) which will under light, react with oxygen and induce formation of reactive oxygen species which are toxic for cells. The PSs used here are either tetrapyrolic (i. e. porphyries and chlorins) or prodrugs of PS (5-aminolevulinic acid precursor of the endogenous protoporphyrin Imo. In order to improve PS internalization and selectivity, we have used two different strategies: the modification of the PSs with diseased cell-targeting agents as well as their encapsulation into nanostructures. Sugars and folic acid are well established as targeting entities for diseased cells and were used here since their transporters are overexpressed on the surface of many cancer cells. Therefore sugar- and folic acid-derivatives of 5-aminolevulinic acid (ALA) were synthesized and evaluated in vitro in several cancer cell lines. The folic acid strategy appeared to be incompatible with ALA since no photosensitivity was induced while the strategy with sugars induced good photosensitivites but no increase of selectivity. Alternatively, the feasibility of combining the antineoplastic properties of ruthenium complexes with the porphyrin's photosensitizing properties, was evaluated since combined therapies have emerged as good alternatives to classical treatments. Tetrapyridylporphyrins complexed to ruthenium (I17 arenes presented good cytotoxicities and good phototoxicities toward melanoma cells. Porphyries were also complexed to diruthenium cores and this type of compound presented good phototoxicities and good selectivity for female reproductive cancer cells. The encapsulation of tetrapyrolic PSs was finally investigated using biocompatible nanogels composed of chitosan and hyaluronate. The behavior of these nanoparticles was evaluated for the treatment of rheumatoid arthritis (RA). They were first tested in vitro in mouse macrophages and results revealed good selectivities and phototoxicities toward these cells. In vivo in mice model of RA, the use of such nanoparticles instead of free PS showed longer time of residence in mice knees. Photodynamic protocols also demonstrated good efficiency of the treatment comparable to the corticoid injection used in the clinic. Finally our system was also efficient in human cells using phagocytic myelomonocytes or using cells of synovial fluids taken from patients with RA. Altogether, these results revealed that both strategies of modification or encapsulation of drugs can be successful in the targeting of diseased cells. However, a careful analysis of the target and of the mode of action of the drug, are needed in order to obtain good results. Looking ahead to the future, the combination of the two strategies (i.e. drugs loaded into nanostructures bearing the targeting agents) would represent probably the best solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are several experimental evidences that nitric oxide (NO) is involved in the microbicidal activity of macrophages against a number of intracellular pathogens including Leishmania major, Trypanozoma cruzi, Toxoplasma gondii. It is also well known that eosinophils (EO) have microbicidal activity against many parasites such as Schistosoma mansoni, Trichinella spiralis, T. cruzi and L. amazonensis. The purpose of this study was to investigate if NO is involved in the microbicidal activity of EO against L. major. Eosinophils harvested from peritoneal cavity of rats released spontaneously after 24 and 48 hr a small amount of nitrite. This release was enhanced by the treatment of cells with IFN-gamma (200 IU/ml). This release was blocked by addition of the NO synthase inhibitor, L-NIO (100 mu M) into the culture. To determinate the leishmanicidal activity of eosinophils the parasites were incubated with activated eosinophils with IFN-gamma and the ability of surviving parasites to incorporate [³H]thymidine was evaluated. IFN-gamma-activated eosinophils were able to kill L. major and to release high levels of nitrite. The ability to destroy L. major and the release of NO were completely blocked by L-NIO. These results indicate that activated eosinophils release NO which is involved in the microbicidal activity of these cells against L. major.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenosine deaminase (ADA) activities in sera, lymphocytes and granulocytes in patients with cutaneous leishmaniasis were investigated and compared with control groups. Fifty patients and 50 healthy individuals were studied. The clinical diagnosis was parasitologically confirmed by culture and Giemsa stain. ADA activities were measured by colorimetric method. Serum ADA activities 37.80 ± 11.90, 18.28 ± 6.08 IU/L (p<0.0001), lymphocyte specific ADA activities 14.90 ± 7.42, 8.38 ± 7.42 U/mg protein (p = 0.04), granulocyte specific ADA activities 1.15 ± 0.73 , 1.09 ± 0.67 U/mg protein ( p>0.05) were found in patients and control groups, respectively. ADA activity increases in some infectious diseases were cell mediated immune mechanisms are dominant. In cutaneous leishmaniasis, lymphokine-mediated macrophage activity is the main effector mechanism. Increase in serum and lymphocyte ADA activities in patients with cutaneous leishmaniasis may be dependent on and reflects the increase in phagocytic activity of macrophages and maturation of T-lymphocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An HIV positive patient presenting a clinical picture of visceral leishmaniasis co-infection was submitted to a bone marrow aspiration after admission to hospital. Amastigotes forms were seen in the bone marrow aspirate and the parasite grew in culture as promastigotes. Molecular analyses showed that the flagellates isolated did not belong to the genera Leishmania, Trypanosoma or Sauroleishmania. It was not possible to establish infection in laboratory animals. In vitro culture of mouse peritoneal macrophages revealed the invasion of the host cells by the flagellates and their killing 48 hr after infection. Opportunistic infection with an insect trypanosomatid was suspected. Further hybridization analyses against a pannel of different monoxenous and heteroxenous trypanosomatids showed kDNA cross-homology with Leptomonas pulexsimulantis a trypanosomatid found in the dog's flea

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: This study was designed to identify macrophage-rich atherosclerotic plaque noninvasively by imaging the tissue uptake of long-circulating superparamagnetic nanoparticles with a positive contrast off-resonance imaging sequence (inversion recovery with ON-resonant water suppression [IRON]). BACKGROUND: The sudden rupture of macrophage-rich atherosclerotic plaques can trigger the formation of an occlusive thrombus in coronary vessels, resulting in acute myocardial infarction. Therefore, a noninvasive technique that can identify macrophage-rich plaques and thereby assist with risk stratification of patients with atherosclerosis would be of great potential clinical utility. METHODS: Experiments were conducted on a clinical 3-T magnetic resonance imaging (MRI) scanner in 7 heritable hyperlipidemic and 4 control rabbits. Monocrystalline iron-oxide nanoparticles (MION)-47 were administrated intravenously (2 doses of 250 mumol Fe/kg), and animals underwent serial IRON-MRI before injection of the nanoparticles and serially after 1, 3, and 6 days. RESULTS: After administration of MION-47, a striking signal enhancement was found in areas of plaque only in hyperlipidemic rabbits. The magnitude of enhancement on magnetic resonance images had a high correlation with the number of macrophages determined by histology (p < 0.001) and allowed for the detection of macrophage-rich plaque with high accuracy (area under the curve: 0.92, SE: 0.04, 95% confidence interval: 0.84 to 0.96, p < 0.001). No significant signal enhancement was measured in remote areas without plaque by histology and in control rabbits without atherosclerosis. CONCLUSIONS: Using IRON-MRI in conjunction with superparamagnetic nanoparticles is a promising approach for the noninvasive evaluation of macrophage-rich, vulnerable plaques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) and monocyte chemoattractant protein-1 (MCP-1) exert partly opposing effects in vascular biology. NO plays pleiotropic vasoprotective roles including vasodilation and inhibition of platelet aggregation, smooth muscle cell proliferation, and endothelial monocyte adhesion, the last effect being mediated by MCP-1 downregulation. Early stages of arteriosclerosis are associated with reduced NO bioactivity and enhanced MCP-1 expression. We have evaluated adenovirus-mediated gene transfer of human endothelial NO synthase (eNOS) and of a N-terminal deletion (8ND) mutant of the MCP-1 gene that acts as a MCP-1 inhibitor in arteriosclerosis-prone, apolipoprotein E-deficient (ApoE(-/-)) mice. Endothelium-dependent relaxations were impaired in carotid arteries instilled with a noncoding adenoviral vector but were restored by eNOS gene transfer (p < 0.01). A perivascular collar was placed around the common carotid artery to accelerate lesion formation. eNOS gene transfer reduced lesion surface areas, intima/media ratios, and macrophage contents in the media at 5-week follow-up (p < 0.05). In contrast, 8ND-MCP-1 gene transfer did not prevent lesion formation. In conclusion, eNOS gene transfer restores endothelium-dependent vasodilation and inhibits lesion formation in ApoE(-/-) mouse carotids. Further studies are needed to assess whether vasoprotection is maintained at later disease stages and to evaluate the long-term efficacy of eNOS gene therapy for primary arteriosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: The presence of intra-articular basic calcium phosphate (BCP) crystals, including OCP, carbonated-apatite, hydroxyapatite and tricalcium phosphate crystals, is associated with severe osteoarthritis and destructive arthropathies such as Milwaukee shoulder. Although BCP crystals displayed, in vitro, mitogenic, anabolic and catabolic responses, their intra-articular effect was never assessed.Objective: To determine the effects of OCP crystals in joints in vivo.Methods: OCP crystals (200 ug in 20 ml PBS) were injected into the right knee joint (the contra-lateral knee joint injected with 20 ul of PBS serving as a control) of wild-type mice treated or not by the IL1R antagonist Anakinra or mice deficient for the inflammasome proteins ASC and NALP3. 4 days and 17 days after crystal injection, mice were sacrificed and knee joints dissected. Histological scoring for synovial inflammation and characterisation of macrophages, neutrophils and T cells were performed. Technetium (Tc) uptake was measured at 6h, 1 and 4 days after OCP injection. Cartilage degradation was evaluated by Safranin O staining and VDIPEN immunohistochemistry. Intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining.Results: The intra-articular localisation of injected OCP crystals was evidenced by Von Kossa staining performed on non-decalcified samples embedded in methyl-metacrylate. Injection of OCP crystals into knee joints led at day 4 to an inflammatory response with intense macrophage staining and also some neutrophil recruitment in the synovial membrane. This synovitis was not accompanied by increased Tc uptake into the knee joint, Tc uptake being similar in OCP crystal injected knee or control knee at all time points investigated (6h, 1 day, 4 days). The histological modifications persisted over 17 days, with an additional fibrosis evidenced at this later time-point. The OCP crystal-induced synovitis was totally IL-1a and IL-1 independent as shown by the absence of inhibitory effects of anakinra injected into wild-type mice. Accordingly, OCP crystal-induced synovitis was similar in ASC-/- and NALP3-/- mice as no alterations of inflammation were demonstrated between these mice groups. Concerning cartilage matrix degradation, OCP crystals induced a strong breakdown of proteoglycans 4 and 17 days after injection, as measured by loss of red staining from Safranin O-stained sections of cartilage surfaces. In addition, we also measured advanced cartilage matrix destruction mediated by MMPs, as evidenced by VDIPEN staining of cartilage. OCP-mediated cartilage degradation was similar in all experimental conditions tested (WT+Anakinra, or ASC or NALP3 deficient mice).Conclusion: These data indicate in vivo that the intra-articular presence of OCP crystals is associated with cartilage destruction along with synovial inflammation. This is an interesting and new model of destructive arthropathy related to BCP crystals which will allow to assess new therapies in this disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nitric oxide (NO) is an important effector molecule involved in immune regulation and defense. NO produced by cytokine-activated macrophages was reported to be cytotoxic against the helminth Schistosoma mansoni. Identification and characterization of S. mansoni antigens that can provide protective immunity is crucial for understanding the complex immunoregulatory events that modulate the immune response in schistosomiasis. It is, then, essential to have available defined, purified parasite antigens. Previous work by our laboratory identified a fraction of S. mansoni soluble adult worm antigenic preparation (SWAP), named PIII, able to elicit significant in vitro cell proliferation and at the same time lower in vitro and in vivo granuloma formation when compared either to SEA (soluble egg antigen) or to SWAP. In the present work we report the effect of different in vivo trials with mice on their spleen cells ability to produce NO. We demonstrate that PIII-immunization is able to significantly increase NO production by spleen cells after in vitro stimulation with LPS. These data suggest a possible role for NO on the protective immunity induced by PIII.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To test the efficiency of locally administrated tresperimus in experimental autoimmune uveoretinitis (EAU). METHODS: EAU was induced in Lewis rats by S-antigen (S-Ag) immunization. Three intravitreal injections of tresperimus (prevention or prevention/treatment protocols) were performed at different time points after immunization. The pharmacokinetics of tresperimus was evaluated in the ocular tissues and plasma. The in vitro effect of tresperimus was evaluated on macrophages. EAU was graded clinically and histologically. Blood ocular barrier permeability was evaluated by protein concentration in ocular fluids. Immune response to S-Ag was examined by delayed type hypersensitivity, the expression of inflammatory cytokines in lymph nodes, ocular fluids and serum by multiplex ELISA, and in ocular cells by RT-PCR. RESULTS: In vitro, tresperimus significantly reduced the production of inflammatory cytokines by lipopolysaccharide-stimulated macrophages. In vivo, in the treatment protocol, efficient tresperimus levels were measured in the eye but not in the plasma up to 8 days after the last injection. Tresperimus efficiently reduced inflammation, retinal damage, and blood ocular barrier permeability breakdown. It inhibited nitric oxide synthase-2 and nuclear factor κBp65 expression in ocular macrophages. IL-2 and IL-17 were decreased in ocular media, while IL-18 was increased. By contrast, IL-2 and IL-17 levels were not modified in inguinal lymph nodes draining the immunization site. Moreover, cytokine levels in serum and delayed type hypersensitivity to S-Ag were not different in control and treated rats. In the prevention/treatment protocol, ocular immunosuppressive effects were also observed. CONCLUSIONS: Locally administered tresperimus appears to be a potential immunosuppressive agent in the management of intraocular inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to investigate purin and primidin metabolism pathways in hepatitis, adenosine deaminase (ADA) and guanosine deaminase (GDA) activities in sera of patients with different types and manifestations of viral hepatitis disease (A, B, C, D, E, chronic, acute) were investigated and compared with the control group of healthy individuals. Hepatitis cases were classified with respect to their serological findings and clinics. When compared all the hepatitis cases with the controls, levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase enzymes, as well as ADA and GDA, were significantly higher than the control group (p<0.01). Levels of ADA and GDA in hepatitis cases were determined as 26.07±11.98 IU/l and 2.37±1.91 IU/l, respectively. When compared their ADA and GDA levels amongst the classified hepatitis groups, there was no difference in ADA levels amongst cases (p>0.05). However, GDA levels in hepatitis A group were closed to the controls. Increase in serum ADA activities in hepatitis forms may be dependent on and reflect the increase in phagocytic activity of macrophages and maturation of T-lymphocytes, and may be valuable in monitoring in viral hepatitis cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An atypical case of acquired immunodeficiency syndrome-associated mucocutaneous lesions due to Leishmania braziliensis is described. Many vacuolated macrophages laden with amastigote forms of the parasite were found in the lesions. Leishmanin skin test and serology for leishmaniasis were both negative. The patient was resistant to therapy with conventional drugs (antimonial and amphotericin B). Interestingly, remission of lesions was achieved after an alternative combined therapy of antimonial associated with immunotherapy (whole promastigote antigens). Peripheral blood mononuclear cells were separated and stimulated in vitro with Leishmania antigens to test the lymphoproliferative responses (LPR). Before the combined immunochemotherapy, the LPR to leishmanial antigens was negligible (stimulation index - SI=1.4). After the first course of combined therapy it became positive (SI=4.17). The antigen responding cells were predominantly T-cells (47.5%) most of them with CD8+ phenotype (33%). Very low CD4+ cells (2.2%) percentages were detected. The increased T-cell responsiveness to leishmanial antigens after combined therapy was accompanied by interferon-g (IFN-g) production as observed in the cell culture supernatants. In this patient, healing of the leishmaniasis lesions was associated with the induction of a specific T-cell immune response, characterized by the production of IFN-g and the predominance of the CD8+ phenotype among the Leishmania-reactive T-cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary : Platelet Derived Growth Factor (PDGF) and Transforming Growth Factor-ß (TGF-ß) are two crucial growth factors in tissue repair and regeneration. They control migration and proliferation of macrophages and fibroblasts, as well as myofibroblast differentiation and synthesis of the new connective tissue. The transcription factor Nuclear Factor I-C (NFI-C) has been implicated in the TGF-ß pathway and regulation of extracellular matrix proteins in vitro. This suggests a possible implication of NFI-C in tissue repair. In this study, our purpose was to identify the NFI-C target genes in TGF-ß1 pathway activation and define the relationship between these two factors in cutaneous wound healing process. High-throughput genomic analysis in wild-type and NFI-C knock-out embryonic fibroblasts indicated that NFI-C acts as a repressor of the expression of genes which transcriptional activity is enhanced by TGF-ß. Interestingly, we found an over representation of genes involved in connective tissue inflammation and repair. In accordance with the genomic analysis, NFI-C-/- mice showed an improvement of skin healing during the inflammatory stage. Analysis of this new phenotype indicated that the expression of PDGFA and PDGF-Ra genes were increased in the wounds of NFI-C-/- mice resulting in early recruitment of macrophages and fibroblasts in the granulation tissue. In correlation with the stimulation effect of TGF-ß on myofibroblast differentiation we found an increased differentiation of these cells in null mice, providing a rationale for rapid wound closure. Thus, in the absence of NFI-C, both TGF-ß and PDGF pathways may be activated, leading to enhanced healing process. Therefore, the inhibition of NFI-C expression could constitute a suitable therapy for healing improvement. In addition, we identified a delay of hair follicle cycle initiation in NFI-C-/- mice. This prompted us to investigate the role of NFI-C in skin appendage. The transition from a quiescent to a proliferative phase requires a perfect timing of signalling modulation, leading to stem cell activation. As a consequence of cycle initiation delay in null mice, the activation of signalling involved in cell proliferation was also retarded. Interestingly, at the crucial moment of cell fate determination, we identified a decrease of CD34 gene in mutant mice. Since CD34 protein is involved in migration of multipotent cells, we suggest that NFI-C may be involved in stem cell mobilisation required for hair follicle renewal. Further investigations of the role of NFI-C in progenitor cell activation will lead to a better understanding of tissue regeneration and raise the possibility of treating alopecia with NFI-C-targeting treatment. In summary, this study demonstrates new regenerative functions of NFI-C in adult mice, which regulates skin repair and hair follicle renewal. Résumé : PDGF et TGF-ß sont des facteurs important du mécanisme de défense immunitaire. Ils influencent la prolifération et migration des macrophages et des fibroblastes, ainsi que la différenciation des myofibroblastes et la formation du nouveau tissu conjonctif. Le facteur de transcription NFI-C a été impliqué dans la voie de signalisation de TGF-ß et dans 1a régulation de l'expression des protéines de la matrice extracellulaire in vitro. Ces études antérieures laissent supposer que NFI-C serait un facteur important du remodelage tissulaire. Cependant le rôle de NFI-C dans un tissu comme la peau n'a pas encore été étudié. Dans ce travail, le but a été de d'identifier la relation qu'il existe entre I~1FI-C et TGF-ßl à un niveau transcriptionnel et dans le processus de cicatrisation cutanée in vivo. Ainsi, une analyse génétique à grande échelle, a permis d'indiquer que NFI-C agit comme un répresseur sur l'expression des gènes dont l'activité transcriptionnelle est activée par TGF-ß. De plus nous avons identifié un groupe de gènes qui controlent le développement et l'inflammation du tissue conjonctif. En relation avec ce résultat, l'absence de NFI-C dans la peau induit une cicatrisation plus rapide pendant la phase inflammatoire. Durant cette période, nous avons montré que les expressions de PDGFA et PDGFRa seraient plus élevées en absence de NFI-C. En conséquence, l'activation de la voie de PDGF induit une infiltration plus importante des macrophages et fibroblastes dans le tissue granuleux des souris mutantes. De plus, en corrélation avec le rôle de TGF-ßl dans la différenciation des myofibroblasts, nous avons observé une différenciation plus importante de ces cellules chez les animaux knock-out, ce qui peut expliquer une contraction plus rapide de la plaie. De plus, nous avons découvert que NFI-C est impliqué dans l'initiation du cycle folliculaire. La caractérisation de ce nouveau phénotype a montré un ralentissement de la transition telogène-anagène des souris NFI-C-/-. Or, un événement clé de cette transition est la modulation de plusieurs signaux moléculaires aboutissant à' l'activation des cellules souches. En corrélation avec le decalage du cycle, l'activation de ces signaux est également décalée dans les souris NFI-C-/-. Ainsi, au commencement de l'anagène, la prolifération des keratinocytes,NFI-C-/- est retardée et corrèle avec une diminution de l'expression de CD34, une protéine responsable de la détermination du migration des cellules multipotentes. Ainsi, NFI-C semble être impliqué dans la mobilisation des cellules souches qui sont nécessaires au renouvellement folliculaire. En résumé, NFI-C est impliqué dans la régulation des signaux moléculaires nécessaires à la réparation tissulaire et son inhibition pourrait constituer un traitement de la cicatrisation. L'analyse de son rôle dans l'activation des cellules souches permettrait de mieux comprendre le renouvellement tissulaire et, à long terme, d'améliorer les techniques de greffe des cellules souches épithéliales ou consituter une cible pour le traitement de l'alopecie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Integration of kDNA sequences within the genome of the host cell shown by PCR amplification with primers to the conserved Trypanosoma cruzi kDNA minicircle sequence was confirmed by Southern hybridization with specific probes. The cells containing the integrated kDNA sequences were then perpetuated as transfected macrophage subclonal lines. The kDNA transfected macrophages expressed membrane antigens that were recognized by antibodies in a panel of sera from ten patients with chronic Chagas disease. These antigens barely expressed in the membrane of uninfected, control macrophage clonal lines were recognized neither by factors in the control, non-chagasic subjects nor in the chagasic sera. This finding suggests the presence of an autoimmune antibody in the chagasic sera that recognizes auto-antigens in the membrane of T. cruzi kDNA transfected macrophage subclonal lines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five mixed breed dogs were inoculated intradermally (ID) with cultured virulent stationary phase promastigotes of Leishmania infantum Nicole, 1908 stocks recently isolated. Parasite transformations in the skin of ID infected dogs were monitored from the moment of inoculation and for 48 h, by skin biopsies. Anti-Leishmania antibody levels were measured by indirect immunofluorescence assay, counterimmunoelectrophoresis and direct agglutination test, and clinical conditions were examined. Thirty minutes after ID inoculation the first amastigotes were visualised and 3 to 4 h after inoculation the promastigotes were phagocyted by neutrophils and by a few macrophages. These cells parasitised by amastigotes progressively disappeared from the skin and 24 h after inoculation parasites were no longer observed. Local granulomes were not observed, however, serological conversion for antibodies anti-Leishmania was achieved in all dogs. Direct agglutination test was the only technique positive in all inoculated dogs. Amastigotes were found in the popliteal lymph node in one dog three months after inoculation. This work demonstrates that, with this inoculum, the promastigotes were transformed into amastigotes and were up taken by neutrophils and macrophages. The surviving parasites may have been disseminated in the canine organism, eliciting a humoral response in all cases.